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Zusammenfassung  

Viele bestehende Brücken wurden auf der Grundlage von Normen bemessen, die keine 
oder nur ungenügende Angaben zu Erdbebenlasten enthielten. Besonders in Ländern 
moderater Seismizität, wie z.B. der Schweiz, sind moderne Erdbebennormen oft erst vor 
wenigen Jahren eingeführt worden, da die Erdbebengefahr lange unterschätzt wurde. 
Existierende Brücken haben daher möglicherweise eine geringe Verformungskapazität 
aufgrund ihrer Bauart und ihrer konstruktiven Details. Um dies zu beurteilen wurde ein 
zweiteiliges Forschungsprojekt zu bestehenden Brücken initiiert. Der erste Teil dieses 
Projektes [1], [2] wurde an der ETHZ ausgeführt und diente zur Abschätzung des 
Verformungsbedarfs von bestehenden Brücken. Er befasste  sich eingehend mit der 
Modellierung von Brücken sowie der Identifizierung kritischer Stützenkonfigurationen. Zu 
den dabei identifizierten kritischen Details gehören (i) Bewehrungsstösse in der 
potenziellen plastischen Region über dem Fundament, (ii) geringe 
Querbewehrungsgrade und (iii) das Fehlen von Umschnürungsbewehrung. Für die 
Überprüfung dieser Brücken können verformensbasierte Methoden, welche die bei einem 
Erdbeben aufgebrachten Verformungen mit der Verformungskapazität vergleichen, 
verwendet werden [1], [2]. 

Der zweite Teil des Forschungsprojektes, der in dem vorliegenden Bericht behandelt 
wird, befasst sich mit der Abschätzung der Verformungskapazität gedrungener, 
wandartiger Stützen (Schlankheit ca. 1 – 3) mit rechteckigem Querschnitt. Da die 
verformensbasierte Überprüfung von praktisch tätigen Ingenieuren durchgeführt wird und 
eine grosse Anzahl Brücken zu überprüfen ist, sollten die Modelle zur Abschätzung des 
Verformungsvermögens relativ einfach anwendbar sein und gleichzeitig gute und nicht zu 
konservative Resultate liefern. Mit dieser Arbeit soll zur Entwicklung solcher Modelle 
beigetragen werden. Versuche an Stützen mit den genannten Konstruktionsdefiziten, die 
im Rahmen beider Teile des Forschungsprojektes an der ETHZ durchgeführt wurden [1], 
[3], dienen als experimentelle Datenbasis zur Überprüfung und Validierung. Zwei Ansätze 
wurden auf Basis der genannten Kriterien zum vertieften Studium ausgewählt: die 
Modellierung mit plastischem Gelenk sowie ein kinematisches Modell für schubkritische 
Wände. 

Der erste Teil dieses Berichtes befasst sich mit der Modellierung mit plastischem Gelenk. 
Es wird ein Überblick über Gleichungen zur Bestimmung der Länge des plastischen 
Gelenkes, zur Ermittlung der Biege- und Schubverformung sowie zur Berechnung der 
Dehnungslimite, die den Versagenszustand definieren, gegeben. Durch Überprüfung mit 
den experimentellen Daten wird ein Verfahren identifiziert, mit dem die Last-
Verformungskurve der Stützen ermittelt werden kann. Der Einfluss der 
Bewehrungsstösse auf das Verhalten sowie die Schubverformungen werden dabei in 
einfacher Weise berücksichtigt. 

Im zweiten Teil des Berichtes werden die Schubdegradation sowie ein kinematisches 
Modell zur Vorhersage des Verhaltens von rechteckigen, schubkritischen Stützen 
behandelt. Das Modell basiert auf der bei Schubrissbildung einsetzenden Kinematik und 
wurde andernorts entwickelt. In diesem Bericht wird es mit Hilfe einer erweiterten 
Datenbank validiert. Ausserdem wird der Einfluss einiger wichtigen Charakteristiken, wie 
zum Beispiel der Bewehrungsgehalte und der Schlankheit, insbesondere im Hinblick auf 
die Verformungskapazität, anhand dieses Modells dargestellt.  

Der Vergleich der Vorhersagen mit den experimentellen Daten zeigte, dass die 
Modellierung mit plastischem Gelenk, trotz ihrer Einfachheit, gute Ergebnisse für die hier 
betrachteten nur teilweise biegebestimmten Wände lieferte. Dieser Modellierungsansatz 
resultiert in einer eher konservativen Abschätzung der Verformungskapazität, die in etwa 
der Verformung bei Maximallast entspricht. Um auch den zum degradierenden Ast 
gehörenden Teil der Antwort zu berücksichtigen, sollte das kinematische Modell, mit dem 
sowohl Querkraft- als auch Axiallastversagen erfasst werden können, verwendet werden.  
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Gliederung des Berichtes 
In den folgenden Abschnitten wird eine Zusammenfassung der wesentlichen Punkte 
dieses Berichtes gegeben. Zuerst wird die Modellierung mit plastischem Gelenk 
dargestellt. Dabei werden das prinzipielle Vorgehen und alle zur Modellierung 
notwendigen Grössen und Formulierungen kurz erläutert. Im Anschluss daran folgt eine 
Einführung in die Grundlagen eines kinematischen Modells zur Berechnung des 
Verhaltens schubkritischer Stützen. Diese ausführliche Zusammenfassung wird auf 
Deutsch und Französisch präsentiert. Danach folgt dann der eigentliche 
Forschungsbericht in englischer Sprache, in dem sowohl ausführlichere Erläuterungen 
als auch die Grundlagen der präsentierten Modelle zu finden sind. 

Modellierung mit plastischem Gelenk 
Einführung 
In diesem Abschnitt werden die wesentlichen Punkte zur Modellierung wandartiger, 
rechteckiger Stützen mit plastischem Gelenk dargestellt. Bei dieser Modellierung wird der 
plastische Bereich am Fuss der Stütze durch ein sogenanntes plastisches Gelenk 
abgebildet, in welchem eine konstante plastische Krümmung angenommen wird. Dies ist 
eine vereinfachte Darstellung des in Experimenten häufig beobachteten näherungsweise 
linearen Verlaufs der plastischen Krümmungen, siehe Abb. 1. In dieser Darstellung ist p 
die plastische Krümmung, ’y die Krümmung bei erstmaligem Fliessen der Längs-
bewehrung, b die Krümmung am Fuss der Stütze und sp die aus der Ausbreitung der 
Dehnungen in das Fundament resultierende Krümmung. Durch die Integration des 
Krümmungsprofils ist der Ansatz mit plastischem Gelenk in erster Linie zur Bestimmung 
der Biegeverformungen geeignet. Die Schubverformungen können jedoch, da sie im 
inelastischen Bereich im Verhältnis zu den Biegeverformungen stehen, ebenfalls 
berücksichtigt werden. 

 

Abb. 1: Wandartige Stütze unter Belastung, resultierendes reales Krümmungsprofil und 
näherungsweise Darstellung im plastischen Gelenk Modell. 

Im Folgenden wird zuerst auf die anhand der Versuchsdaten bestimmte Länge des 
plastischen Gelenkes eingegangen. Danach werden Empfehlungen zur Momenten-
Krümmungsanalyse und den Dehnungslimits, mit welchen die Krümmungs- und damit die 
Verformungskapazitäten der Stützen bestimmt werden, gegeben. Im Anschluss wird auf 
die Bestimmung der Biege- und Schubverformung eingegangen, aus deren Summe sich 
die Gesamtverformung bestimmen lässt. Ausserdem werden Hinweise zur 
Berücksichtigung eines Bewehrungsstosses am Stützenfuss gegeben.  
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Wahl der Länge des plastischen Gelenkes 
Das plastische Gelenk ist eine Modellierungsgrösse, die im Modell den inelastischen 
Bereich eines Bauteils abbildet. Basierend auf den im Rahmen der in den beiden Teilen 
dieses Projektes durchgeführten Tests [1] [3], wurden verschiedene Gleichungen zur 
Ermittlung der Länge des plastischen Gelenkes von Wänden evaluiert. Die beste 
Übereinstimmung mit den experimentellen Daten wurde mit der folgenden Gelenklänge 
[4] erzielt: 

  . . . .p s
g c

PL 0 2h 0 05L 1 1 5 0 8h
A f

 
     

 
  (1) 

In dieser Gleichung werden neben der Querschnittshöhe h und der Schubspannweite Ls 
auch ein die Gelenklänge reduzierender Einfluss der Axiallast P berücksichtigt. Letztere 
ist als bezogene Last P/(Agfc) enthalten, berechnet mit der Bruttoquerschnitsfläche der 
Wand Ag und der Betonfestigkeit fc. Nicht explizit berücksichtigt wird hingegen ein „Strain 
Penetration“ Anteil, mit welchem die Ausbreitung der Dehnungen ins Fundament erfasst 
wird. Der Vergleich mit den experimentellen Daten im inelastischen Bereich hat gezeigt, 
dass dieser Anteil im allgemeinen vergleichsweise klein ist und die Gesamtverformung 
der Stützen ohne zusätzliche Berücksichtigung dieses Effektes gut abgeschätzt werden 
kann.  

Momenten-Krümmungsbeziehung und Dehnungslimits 
Zur Ermittlung der Momenten-Krümmungsbeziehung wird eine Querschnittsanalyse 
durchgeführt. Diese basiert auf der Annahme, dass ebene Querschnitte eben bleiben. 
Abb. 2 stellt die wichtigsten Grundlagen der Querschnittsanalyse dar. Neben der der 
Querschnittsanalyse zugrunde liegenden Annahme der Dehnungsverteilung und der 
Momenten-Krümmungsbeziehung für einen der betrachteten Versuchskörper werden die 
für Beton und Stahl verwendeten Materialgesetze gezeigt. Für den Beton wurde die 
Spannungs-Dehnungsbeziehung für umschnürten Beton gemäss [5] verwendet. Für den 
Stahl wurde eine bilineare Spannungs-Dehnungsbeziehung verwendet und 
Zugversteifung („tension stiffening“) wurde nicht berücksichtigt 

 

 

 

 

 

a) Querschnitt und 
Dehnungsverteilung. 

b) Momenten-
Krümmungsbeziehung. 

c) Materialgesetze. 

Abb. 2: Grundlagen der Querschnittsanalyse. 

Die Verformungskapazität des Bauteils wird in der Regel über das Erreichen eines 
Dehnungslimits im plastischen Gelenk definiert. Bei Überschreiten dieser Dehnung wird 
angenommen, dass die Schädigung im plastischen Bereich gross genug ist, um zu einem 
gewissen, als Versagenszustand definierten, Lastabfall zu führen. Ein Verlust der 
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nicht
umschnürtBeton
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Querkrafttragfähigkeit von 20% wird häufig als Versagen definiert. Die hier präsentierten 
Dehnungslimiten für Beton cu,cyc und Stahl su,cyc wurden für diesen Lastabfall entwickelt 
[6]: 

 

/

,
,

,

. .

/

3 2
con v yv

cu cyc
c con cc

2
l c

con
con con con con

k f10 0035 0 4
x f

s 6s sk 1 1 1
2b 2h b h




 
    

 
   
          


 (2) 

 , .su cyc su0 375     

In den Gleichungen bezeichnen xc,con die Tiefe der umschnürten Druckzone, hcon und bcon 
die Dimensionen des umschnürten Querschnittes, v den Querbewehrungsgrad, fyv die 
Fliessgrenze der Querbewehrung, fcc die Druckfestigkeit des umschnürten Betons, s den 
Abstand der Querbewehrung und sl,c den Abstand der Längsbewehrungsstäbe, die durch 
Haken o.ä. gegen Ausknicken gesichert sind. Bezüglich des Dehnungslimits für den Stahl 
ist anzumerken, dass dieses experimentell nicht verifiziert werden konnte, da ein 
Versagen der Längsbewehrung in den Versuchen nicht massgebend war. Die 
Endbereiche der betrachteten Stützenquerschnitte waren nicht umschnürt. Die Versuche 
haben gezeigt, dass das elastisch bleibende Fundament jedoch in einer gewissen 
Umschnürung des Wandfusses resultiert, welche bei der Beurteilung der 
Dehnungskapazität des Betons berücksichtigt werden sollte. Die Dimensionen des 
umschnürten Querschnittes wurden hier den Dimensionen des durch die Lage der 
gesamten Stützenlängsbewehrung definierten Kerns gleich gesetzt. Bei den hier 
betrachteten wandartigen Stützen wird mit diesen Dehnungslimits eine Verformung als 
Verformungskapazität definiert, die kurz nach der Verformung bei Maximallast erreicht 
wird. Eine weiterreichende Berücksichtigung der post-peak Verformungskapazität ist mit 
dem plastischen Gelenk Modell nicht möglich. Dies liegt unter anderem daran, dass mit 
zunehmender Schädigung des Bauteils die im plastischen Gelenk Modell getroffene 
Annahme von eben bleibenden Querschnitten immer weniger gültig ist und ein Teil des 
Lastabfalls auf eine Degradation des Schubmechanismus, der mit diesem Modell nicht 
erfasst wird, zurückzuführen ist. Falls eine bessere Anrechnung der post-peak 
Verformungskapazität notwendig ist, sollte das später erwähnte kinematische Modell 
angewendet werden. 

Berücksichtigung von Bewehrungsstössen 
Ein Stoss der Längsbewehrung am Fuss der Stütze, wo sich auch das plastische Gelenk 
bildet, kann zu einem schnellen Abfall der Querkrafttragfähigkeit führen, sobald das 
Versagen des Stosses einsetzt. Sofern der Stoss nicht umschnürt ist und lang genug ist, 
um die sich aus der Stahlzugfestigkeit ergebende Zugkraft aufzunehmen, wird das 
Stossversagen durch Schädigung des Betons auf Druck eingeleitet. Die Übertragung der 
Kraft zwischen den gestossenen Stäben wird, falls keine Umschnürungsbewehrung 
vorhanden ist, einzig durch den Beton sichergestellt. Durch das Entstehen von 
Betondruckrissen wird die Betonzugfestigkeit und somit die Kapazität der 
Kraftübertragung herabgesetzt. Unter zyklischer Belastung wird bei einer auf die 
Druckbelastung folgenden Zugbelastung damit das Entstehen von Spaltrissen begünstigt, 
was zu einem Verlust der Tragfähigkeit des Stosses führen kann. 

Das Dehnungslimit für das Versagen des Betons auf Druck kann gemäss der Gleichung 
nach [5] für umschnürten Beton abgeschätzt werden:  
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kcon wird nach Gl. (2) mit einem Bügelabstand s, der dem Abstand zwischen dem 
Fundament und dem untersten Bügel entspricht, bestimmt. Das heisst das Fundament 
wird für diesen Fall als Bügel betrachtet. Ausserdem werden zur Ermittlung der 
Effektivität der Umschnürung (ebenfalls Faktor kcon) alle Längsbewehrungsstäbe 
angerechnet, da diese durch das Fundament in Querrichtung gehalten sind. Der 
Längsbewehrungsabstand der gegen Knicken gesicherten Stäbe sl,c entspricht somit dem 
Längsbewehrungsabstand sl. In Längs- (x) bzw. Querrichtung (y) der Bügel wird eine 
Spannung f’lx/y=kconvx/yfyv angenommen, die den Beton umschnürt. Die 
Querbewehrungsgehalte und die Anzahl der berücksichtigten Längsbewehrungsstäbe 
wurden hier, da bei den Stützen kein umschnürter Endbereich vorhanden war, für einen 
quadratischen Bereich am Rand des Querschnittes bestimmt. Um die 
Verformungskapazität bei einsetzendem Stossversagen abzuschätzen, ist das kleinste 
Dehnungslimit gemäss Gl. (2) – (3) massgebend.  

Nach dem Erreichen der zu diesem Limit gehörenden Krümmung wird ein sofortiger 
Abfall des Querkraftwiderstandes auf eine durch die Exzentrizität der Axiallast bestimmte 
Restkapazität angenommen. Letztere wird gemäss folgender Gleichung bestimmt: 
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Hierin bezeichnen hc und bc die Dimensionen des durch die Lage der Längsbewehrung 
definierten Kerns, das heisst die Dimensionen der Stütze ohne Berücksichtigung der 
Betonüberdeckung. 

Biegeverformungen 
Die Biegeverformungen können mit dem sogenannten verfeinerten Ansatz nach [7] 
bestimmt werden. Dieser Ansatz erlaubt eine Bestimmung der gesamten Last-
Verformungskurve anstatt der häufig verwendeten bilinearen Approximation. Zwischen 
dem Nullpunkt und der Biegeverformung bei erstmaligem Fliessen 'y,fl (zugehörige 
Krümmung 'y) wird dabei linear interpoliert (siehe auch Abb. 2 b) ). Die Krümmung 'y 
wird durch erstmaliges Fliessen der äussersten Bewehrungsstäbe (zugehörige Dehnung 
s=fy/Es) oder durch erstmaliges Erreichen der maximalen Druckspannung gehörenden 
Betonstauchung (typischerweise c=0.002) am äussersten Rand des Querschnittes 
definiert. Danach werden die Biegeverformungen fl abhängig von der mit der 
Querschnittsanalyse bestimmten Krümmung  berechnet: 
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  (5) 

Mit diesen Gleichungen können die Biegeverformungen bis zu dem Punkt bestimmt 
werden, der durch die von den Dehnungslimits in Gl. (2) – (3) abhängige maximale 
Krümmung u definiert ist. Diese Biegeverformung entspricht, wie bereits erwähnt, der 
durch das plastische Gelenk Modell definierten Verformungskapazität. 

Mit Gl. (1) – (5) lassen sich die Biegeverformungen bestimmen, die in Abb. 3 
exemplarisch für eine Stütze mit duchgängiger Bewehrung (VK6) sowie für die 
zugehörige Stütze mit Stoss (VK5) dargestellt sind. Zum Vergleich sind die experimentell 
gemessenen Biegeverformungen sowie die Punkte, bei denen im Versuch erstmals die 
Dehnungslimits gemäss Gl. (2) – (3) überschritten wurden, dargestellt. Die 
Biegeverformungen werden als Drift, das heisst mittlere Schiefstellung =fl/Ls in Prozent, 
dargestellt. 
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Abb. 3: Berechnete und experimentell bestimmte Biegeverformungen je eines 
Versuchskörpers mit (VK5) und ohne (VK6) Stoss [3]. 

Schubverformungen 
Wie im ersten Abschnitt dargestellt ist die Modellierung mit plastischem Gelenk primär 
dazu gedacht, die Biegeverformungen eines Bauteils vorherzusagen. Da die 
Schubverformungen jedoch im inelastischen Bereich in der Regel zu den 
Biegeverfomungen in Relation stehen, können sie in der Modellierung über diese 
Relation berücksichtigt werden. Die im Rahmen dieses Projektes durchgeführten 
Experimente haben gezeigt, dass bei Erreichen der Fliesslast F’y die Schubverformungen 
noch relativ klein sind und nicht berücksichtigt werden müssen. Im inelastischen Bereich 
wurden jedoch bei den schubkritischen Stützen Schubverformungen bestimmt, die über 
30% der Biegeverformungen entsprechen. Eine Vernachlässigung dieser Verformungen 
würde daher zu einer Unterschätzung der Verformungskapazität führen. 

Für die hier betrachteten Versuchskörper wurde eine gute Abschätzung des Schub- zu 
Biegeverformungsverhältnisses mit einem modifizierten Ansatz nach [8] erreicht. Mit 
dieser Gleichung werden die Schubverformungen über die Krümmung und die Axial-
dehnung zu den Biegeverformungen in Relation gesetzt. Mit diesen beiden Werten 
können für die Biegeverformungen im plastischen Bereich die korrespondierenden 
Schubverformungen bestimmt werden. Weiterhin hängen die Schubverformungen von 
dem erwarteten Risswinkel  ab; je steiler dieser Winkel ist, d.h. je mehr 
Schubrissbildung auftritt, desto grösser sind die Schubverformungen. Der Risswinkel wird 
hier über die Längs- und Querbewehrungsgehalte, l und v, abgeschätzt [9]. Das Schub- 
zu Biegeverformungsverhältnis folgt damit abhängig von der Axialdehnung im 
Schwerpunkt des Querschnittes l als: 
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Zur Berücksichtigung der Beobachtung, dass Bauteile mit geringem Schubwiderstand 
grössere Schubverformungen aufweisen, wird der Korrekturfaktor  auf Basis des Schub-
Zugwiderstandes Vn gemäss [10] sowie des Stegdruckwiederstandes Vwc gemäss EC2 
6.2.3 (3) [11] berücksichtigt: 
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Der innere Hebelarm z und die Höhe der Druckzone xc können aus der Momenten-
Krümmungsanalyse bestimmt werden. Bei Längsbewehrungsgehalten l>2.5% wird der 
Term (0.5+20l) zu 1.0 gesetzt. Der Term (3-Ls/h) berücksichtigt nur einen Übergang 
zwischen den Schubschlankheiten 1.5 bis 2.0, d.h. 1≤ (3-Ls/h) ≤ 1.5. Der Anteil der 
Axiallast P wird nur im Fall einer Druckkraft berücksichtigt und ist andernfalls gleich null.  

 

Abb. 4: Berechnete und experimentell bestimmte Schub- zu Biegeverformungs-
verhältnisse bei Maximallast (Versuche [1], [3]). 

Mit diesem Ansatz zur Bestimmung des Schub- zu Biegeverformungsverhältnisses s/fl 
werden für die sieben hier betrachteten Versuchskörper [1], [3] die in Abb. 4 dargestellten 
Ergebnisse für das Verhältnis bei Maximallast erzielt. 

Gesamtverformung 
Die Gesamtverformung setzt sich aus den Biege- und Schubverformungen zusammen. 
Bis zum Fliessbeginn der Längsbewehrung werden die Schubdeformationen jedoch als 
vernachlässigbar betrachtet und lediglich die Biegedeformationen berücksichtigt. Daher 
kann bei Fliessbeginn ( y  ) die Gesamtdeformation wie folgt abgeschätzt werden:  
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Im inelastischen Bereich, das heisst für Krümmungen y  , wird die Gesamtverformung 

wie folgt berechnet: 
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Die Biegeverformungen sowie das Biege- zu Schubverformungsverhältnis in dieser 
Gleichung werden gemäss Gl. (1) und (5) – (7) bis zu der Krümmung, bei welcher die 
Dehnungslimits gemäss Gl. (2) – (3) erreicht werden, bestimmt. Für die beiden zuvor 
exemplarisch betrachteten Versuchskörper ergeben sich damit die in Abb. 5 dargestellten 
Last-Verformungskurven. 
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Abb. 5: Berechnete und experimentell bestimmte Gesamtverformungen je eines 
Versuchskörpers mit (VK5) und ohne (VK6) Stoss. 

Kinematisches Modell 
Einführung 
Das kinematische Modell basiert auf der sich bei ausgeprägter Schubrissbildung 
einstellenden Kinematik. Dies bedeutet, es kann weder für eindeutig biegebestimmte 
Bauteile angewendet werden noch für solche mit Bewehrungsstoss am Fuss. Das Modell 
wurde basierend auf einem ähnlichen Modell für Balken mit grosser Querschnittshöhe 
[12] entwickelt. In dem Modell für Balken wurde das Verformungsfeld mit nur zwei 
Parametern beschrieben. Für wandartige Stützen wurde ein dritter Parameter 
hinzugefügt, daher der Name „3 Parameter Kinematic Theory (3PKT)“. Eine genaue 
Einführung in diese Theorie ist im Rahmen dieser Zusammenfassung nicht möglich. Der 
Leser wird dazu auf die Publikation [13]  verwiesen, in welcher die Theorie präsentiert 
wurde, sowie auf Kapitel 5 des folgenden Berichtes, welches eine Validierung der 
Theorie enthält. 

Im Folgenden werden die Grundlagen der Theorie kurz dargestellt und die 
vorhergesagten Last-Verformungskurven einiger Stützen mit den experimentellen Daten 
verglichen. Mit Hilfe dieser Theorie können die Verformungen bis zur Degradation des 
Schubmechanismus und somit bis zum Verlust sowohl der Querkraft- als auch der 
Axiallasttragfähigkeit vorhergesagt werden. Damit ist eine bessere Ausnutzung der 
tatsächlichen Verformungskapazität eines Bauteils nach Erreichen der Maximallast 
möglich.  

Grundlagen der Modellierung 
In Abb. 6 werden die im Modell angenommene Kinematik sowie die berücksichtigten 
Tragmechanismen dargestellt. Der linke Teil des Bildes zeigt die angenommene 
Verformung der Stütze. Unter dem Schubriss wird ein radial gerissener Bereich 
angenommen, oberhalb ein Starrkörper. Am Fuss der Stütze direkt über dem Schubriss 
wird ein Bereich angenommen, in dem sich die Schädigung des Starrkörpers 
konzentriert. Das gesamte Verformungsfeld wird durch die drei eingezeichneten 
Parameter s,avg, c und cv dargestellt. Der erste Parameter s,avg bezeichnet die mittlere 
Dehnung der Längsbewehrung, welche die Verlängerung auf der Zugseite der Stütze 
sowie die Rotation des Starrkörpers beeinflusst. Die beiden übrigen Parameter c und cv 
bezeichnen die Translation und die vertikale Verschiebung des Starrkörpers, die durch 
Verformung des geschädigten Bereiches am Fuss des Starrkörpers verursacht werden.  

Der zweite Teil von Abb. 6 zeigt die in der Theorie berücksichtigten Tragmechanismen. 
Alle Kräfte werden im Modell als Federn dargestellt, deren Gesetze sich aus den 
Materialeigenschaften ergeben. Die Dehnungen der Federn wiederum resultieren aus 
den mit den drei genannten Parametern bestimmten Verformungen.  
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Abb. 6: Grundlagen der kinematischen Theorie. 

Die Längs- und Querbewehrung werden als jeweils eine Feder dargestellt die im 
Schwerpunkt der jeweiligen Bewehrung angreifen und deren Resultierende Fst bzw. Fs 
sich durch die vom Verformungsfeld abhängigen Dehnungen s und v ergeben. Zur 
Berücksichtigung der Dübelwirkung wird angenommen, dass die Längsbewehrung am 
Rissufer zweier benachbartes Schubrisse eingespannt ist. Die Dübelkraft Fd folgt dann 
aus dem Momentenprofil über die Länge lk, welches von der Relativverschiebung 
zwischen den beiden Einspannpunkten d abhängt. Entlang des Schubrisses wirkt 
ausserdem die Resultierende der Rissverzahnung Fci, die von der Rissöffnung w und 
dem Schlupf s entlang des Risses abhängt. 

Im stärker geschädigten Bereich am Fuss des Starrkörpers greifen mehrere Kräfte an. 
Zum einen ist dies die aus der Stauchung dieser Zone CLZ resultierende Betondruckkraft 
FCLZ, deren Wirkungsrichtung von der Translation sowie der Verkürzung dieser Zone (c 
und cv) abhängt. Je nach Schlankheit der Stütze und aufgebrachter Axiallast entsteht 
zwischen der Spitze des Starrkörpers und dem radial gerissenen Bereich eine hohe 
Kontaktkraft. Durch eine Abwärtsbewegung des Starrkörpers resultiert daraus eine 
Reibungskraft und damit die Kraftresultierende Fcf. Ausserdem greift in diesem Bereich 
der Stütze die aus der Stauchung der Längsbewehrung sc resultierende Druckkraft Fsc 
an. 

Im radial gerissenen Bereich unterhalb des massgebenden Schubrisses ensteht eine 
Betondruckkraft am Fuss der Stütze Fc. Neben dieser Kraft wirken die bereits erwähnten 
über den Riss übertragenen Kraftkomponenten auf den Bereich unterhalb des 
Schubrisses ein. 

Durch Gleichgewichts- und Kompatibilitätsbetrachtungen können für jede Kopf-
verschiebung  das Verformungsfeld und die Kraftkomponenten, aus welchen sich die 
Gesamtquerkraft V ergibt, berechnet werden. Nach dieser Theorie wird Versagen 
dadurch eingeleitet, dass die Zone am Fuss des Starrkörpers zu stark geschädigt ist und 
die resultierende Kraft FCLZ abfällt. Dies geht einher mit einer hohen Stauchung dieser 
Zone, die zu einem Abwärtsgleiten des Starrkörpers entlang des Schubrisses führt. Diese 
Abwärtsbewegung resultiert in einer höheren Rissverzahnungskraft Fci, die den Verlust 
der Kraft FCLZ zunächst ausgleicht. Bei weiterem Abwärtsgleiten sowie grösserer 
Rissöffnung degradiert jedoch auch dieser Mechanismus, was zu einem Verlust der 
Querkraft- und Axiallastkapazität der Stütze führt.  

Darstellung der Ergebnisse 
In Abb. 7 werden die mit der kinematischen Theorie erzielten Ergebnisse für zwei der im 
Rahmen dieses Forschungsprojektes getesteten Versuchskörper dargestellt. Der 
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Vergleich mit den experimentellen Daten zeigt, dass neben der Querkrafttragfähigkeit 
auch der stärker degradierende Teil der Last-Verformungskurve gut erfasst wird. 
Ausserdem wird in den Graphen der Beitrag der einzelnen Querkraftkomponenten 
dargestellt. Dies veranschaulicht den bereits geschilderten Versagensmechanismus: 
Nachdem die Querkraftkomponente VCLZ abfällt, wird zuerst ein Ansteigen der 
Rissverzahnungskomponente Vci beobachtet, bevor auch diese, und damit die gesamte 
Kapazität der Stütze, degradiert. 

 

Abb. 7: Darstellung der mit der kinematischen Theorie erzielten Ergebnisse für zwei 
Versuchskörper. 

Einfluss ausgewählter Parameter auf die Verformungskapazität 
In diesem Abschnitt wird der Einfluss zweier Parameter, die auch Gegenstand der 
experimentellen Untersuchungen waren, auf das Verformungsvermögen mit Hilfe der 
3PKT dargestellt. Zum einen wird der Einfluss der Querbewehrung und zum anderen der 
Einfluss der Schlankheit untersucht. Die Querbewehrung wurde in den Versuchen VK3 
(Querbewehrungsgehalt 0.08%) und VK7 (Querbewehrungsgehalt 0.22%) variiert. 
Erwartungsgemäss stieg die Verformungskapazität mit zunehmendem Querbewehrungs-
gehalt an, während die Kraftkapazität unbeeinflusst blieb, siehe Abb. 8. Letzteres kann 
damit begründet werden, dass auch bei geringem Querbewehrungsgehalt kein 
vorzeitiges Schubversagen auftrat, sondern die volle Kapazität erreicht wurde.  

Abb. 8: Einfluss des Querbewehrungsgehaltes auf das Verhalten der Versuchskörper. 

Ein Vergleich mit weiteren Versuchen [14] zeigte allerdings, dass die Ausprägung des 
Einflusses stark von der Konfiguration der Versuche abhängt. Während bei den 
schlankeren Versuchen VK3 & VK7 (Ls/h=2.2) ein starker Anstieg der zu 80% 
Querkraftkapazität korrespondierenden Verformungskapazität zu beobachten war und 
auch berechnet wurde, ist der günstige Einfluss der Querbewehrung bei den kürzeren 
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Versuchen [14] (Hirosawa (1975) in Abb. 8 mit „Hir“ gekennzeichnet, Ls/h=1.0) deutlich 
weniger ausgeprägt. 

Eine Änderung der Schlankheit beeinflusst sowohl den Querkraftwiderstand als auch das 
Verformungsvermögen. Mit zunehmender Schlankheit nimmt der Querkraftwiderstand ab 
während das Verformungsvermögen ansteigt, siehe Abb. 9. Die Berechnungen, die mit 
Hilfe der 3PKT für die Versuchskörper VK3 & VK6 mit gemittelten Materialwerten und 
variabler Schlankheit durchgeführt wurden, zeigen zudem einen deutlichen Anstieg des 
Verformungsvermögens zwischen den Schlankheiten 1.5 und 2.0. Der Vergleich der 
Last-Verformungskurven in Abb. 9 zeigt, dass für die betrachteten Versuchskörper bei 
Schlankheiten kleiner als ca. 1.5 ein eher sprödes Verhalten vorherrscht, während 
höhere Schlankheiten mit einem duktileren Verhalten und der Ausbildung eines 
Fliessplateaus einher gehen.  

  

Abb. 9: Einfluss der Schlankheit auf das Verhalten der Versuchskörper. 

Für eine detailliertere Diskussion des Einflusses verschiedener Parameter sowie einen 
Vergleich mit Abschätzungen der Driftkapazität gemäss anderer, existierender 
Formulierungen wird der Leser auf Abschnitt 5.5 des folgenden Berichtes verwiesen. 

Schlussfolgerungen 
Wie in den vorhergehenden Abschnitten dargestellt, kann mit Hilfe des plastischen 
Gelenk Modells eine Vorhersage der Last-Verformungskurve bis kurz nach Erreichen der 
Maximallast getroffen werden. Die Vorgehensweise zur Bestimmung der Last-
Verformungskurve einer rechteckigen, wandartigen Stütze ist in diesen Abschnitten 
zusammengefasst. Zur Abschätzung der Verformungskapazität wird prinzipiell dieses 
Modell empfohlen, da es eine eher konservative Abschätzung der tatsächlichen Kapazität 
liefert und zudem einfach und schnell anwendbar ist. Falls es jedoch im Rahmen der 
verformensbasierten Überprüfung einer Brückenstütze für sinnvoll erachtet wird, den 
post-peak Bereich der Antwort stärker zu berücksichtigen, z.B. wenn die mit dem 
plastischen Gelenk Modell berechnete Kapazität knapp unter dem erwarteten 
Verformungsbedarf liegt, kann das kinematische Modell angewendet werden. Hierbei ist 
jedoch zu beachten, dass zum einen die Implementierung aufwendiger ist und zum 
anderen der abfallende Teil der Last-Verformungskurve mit einer Degradation des 
Mechanismus, der auch die Axiallastkapazität sicherstellt, einhergeht. Es muss daher im 
Einzelfall überlegt werden, wie weit die mit diesem Modell vorhergesagte Verformungs-
kapazität ausgenutzt werden soll. 
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Berechnungsbeispiel  

Einleitung 
In diesem Abschnitt wird ein Berechnungsbeispiel zur Anwendung des plastischen 
Gelenk Modells für eine Brückenstütze mit (VK5) und ohne (VK6) Bewehrungsstoss 
gegeben. Die Vorgehensweise wird Schritt für Schritt dargestellt und die Unterschiede 
zwischen dem Vorgehen bei Stützen mit und ohne Bewehrungsstoss werden 
verdeutlicht. Bei den im Beispiel verwendeten Stützen handelt es sich um die gleichen, 
die auch im Bericht selbst näher untersucht werden. 

Stützendaten 
Der Querschnitt der Stützen, für welche die Beispielrechnung durchgeführt wird, sowie 
alle notwendigen Eingangsdaten sind in Abb. 1 dargestellt. Es handelt sich hierbei um 
zwei rechteckige Stützen mit gleichmässig im Querschnitt verteilter Bewehrung. VK6 hat 
eine durchgängige Längsbewehrung, während die Längsbewehrung von VK5 direkt über 
dem Fundament auf einer Länge von 60cm, entsprechend 43 Stabdurchmessern, 
gestossen ist. Bis auf den Bewehrungsstoss unterscheiden sich die beiden Stützen nur 
durch eine leichte Streuung der Materialwerte. Für die Beispielrechnung werden die 
Materialwerte von VK5 verwendet. 

 

Abmessungen Stütze 
b / h / Ls = 0.35m / 1.50m / 4.50m 
 
Bewehrung 
Längsbewehrung: l = 1.23%  
 42 Stäbe dbl = 14mm, Abstand sl = 80mm
Querbewehrung:  v = 0.08%  
zweischnittige Bügel dbv = 6mm, Bügelabstand s = 200mm  
Betondeckung: cnom = 25mm 
 
Material 
Beton:  fc = 35.2MPa  
Längsbewehrung:  fy = 520MPa,  fu/fy = 1.17 
 su = 11% 
Querbewehrung: fy = 528MPa,  fu/fy = 1.29 
 su = 7.1% 
 

Abb. 1: Abmessungen und Materialeigenschaften der Brückenstützen. 

Momenten-Krümmungsbeziehung 
Zuerst wird die Momenten-Krümmungsanalyse des Querschnittes durchgeführt. Dies 
kann zum Beispiel mittels eines Programmes wie Response2000 [94] geschehen. Die im 
Beispiel verwendete Analyse wurde mit einem in Matlab [57] programmierten Code 
durchgeführt. Für den Beton wurde die Spannungs-Dehnungsbeziehung für umschnürten 
Beton gemäss Mander et al. [5] verwendet. Im betrachteten Fall sind zwar nur Bügel mit 
90° Haken und keine zusätzlich umschnürten Randbereiche vorhanden, aber mit diesem 
Materialmodell wurde auch nach Erreichen der Betondruckfestigkeit eine realistische 
Momentenkapazität abgeschätzt. In Bezug auf die Steigerung der Druckfestigkeit ist der 
durch die vorhandenen Bügel hervorgerufene Effekt allerdings gering, wie Abb. 2 zeigt. 
Die dort dargestellte Kurve des nicht umschnürten Betons wurde nur für den 
Überdeckungsbeton verwendet. Bei diesem wurde angenommen, dass er abplatzt, 
sobald eine Dehnung von 4‰ erreicht ist. Aus diesem Grund fällt die Spannung in der 
dargestellten Kurve bei einer Dehnung von 4‰ direkt auf null ab. Für den Stahl wurde 
eine bilineare Spannungs-Dehnungsbeziehung verwendet und Zugversteifung („tension 
stiffening“) wurde nicht berücksichtigt. 
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Abb. 2: Bei der Querschnittsanalyse angenommene Dehnungsverteilung und 
verwendete Materialgesetze. 

Dehnungslimits 
Durchgängige Längsbewehrung 

Die Momenten-Krümmungsbeziehung wird verwendet bis zu der Krümmung, bei welcher 
das Dehnungslimit, durch welches das Versagen definiert ist, erstmals erreicht wird. Zur 
Berechnung des Dehnungslimits für Beton cu,cyc und Stahl su,cyc werden bei einer Stütze 
mit durchgängiger Längsbewehrung die folgenden Gleichungen verwendet [6]: 
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In den Gleichungen bezeichnen xc,con die Tiefe der umschnürten Druckzone, hcon und bcon 
die Dimensionen des umschnürten Querschnittes, v den Querbewehrungsgrad, fyv die 
Fliessgrenze der Querbewehrung, fcc die Druckfestigkeit des umschnürten Betons, s den 
Abstand der Querbewehrung und sl,c den Abstand der Längsbewehrungsstäbe, die zum 
Beispiel durch Haken gegen Ausknicken gesichert sind. Die Dimensionen des 
umschnürten Querschnittes und die Tiefe der Druckzone werden im Folgenden bis zur 
Mitte der Bügel berechnet. Die Stababstände werden ebenfalls jeweils von Mittelpunkt zu 
Mittelpunkt der Stäbe angesetzt.  

Als Tiefe der umschnürten Druckzone wird hier die minimale Tiefe der Druckzone, die bei 
der Querschnittsanalyse ermittelt wurde, abzüglich der Betonüberdeckung bis zum 
Mittelpunkt der Bügel angesetzt. Die vier Längsbewehrungsstäbe in den Ecken des 
Querschnittes wurden aufgrund der Verbügelung als gehalten angesehen, und daher bei 
der Ermittlung von kcon berücksichtigt (sl1). Beim Bau der Stützen wurden ausserdem zur 
Stabilisierung des Bewehrungskorbes zwei Reihen Haken eingefügt, mit denen die 
Längsbewehrung gehalten wurde. Diese wurde ebenfalls als Ausknickbewehrung in 
Rechnung gestellt (sl2). In Gleichung (2) sollte prinzipiell die umschnürte Betonfestigkeit 
verwendet werden. Da jedoch bei den hier betrachteten Stützen der Einfluss der 
Umschnürung auf die Betonfestigkeit sehr gering ist, wird hier vereinfachend die 
Betonfestigkeit fc angesetzt. 

Für den betrachteten Querschnitt werden damit die folgenden Dehnungslimite berechnet: 

 

Berechnung 

hcon = 1500mm – 2·25mm – 6mm = 1444mm  
bcon = 350mm – 2·25mm – 6mm = 294mm 

� s� l
� c

Querschnitt

Dehnungsverteilung

�

0 2 4 6

x 10
−3

1

Dehnung εc [-]

Sp
an

nu
ng

f c
/
f c

c
[-]

 

 
fcc

εcc

umschnürt
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s = 200mm 
sl1 = 350mm – 2·25mm – 2·6mm – 14mm  = 284mm  
sl2 = (1500mm – 2·25mm – 2·6mm – 14mm)/3 = 478mm 
  → kcon =0.24 
xccon = 320mm – 28mm = 222mm  
௖௨ߝ	→   = 0.0035 + ቀ ଵଷଶ଴ቁయమ + 0.4 ଴.ଶସ	∙଴.଴଴଴଼∙ହଶ଼ଷହ.ଶ = 0.0049 

௦௨ߝ	→   = 0.375	 ∙ 0.11 = 0.041 

 

Übergreifungsstoss der Längsbewehrung am Stützenfuss 

Bei Stützen, bei welchen die Längsbewehrung am Stützenfuss gestossen ist, wird als 
Dehnungslimit die kleinste der mit Gleichungen (2) und (3) ermittelten Dehnungen 
angesetzt.  
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 (3) 

௟݂ᇱ = 	݇௖௢௡ߩ௩ ௬݂௩ 
In dieser Gleichung wird kcon nach Gl. (2) mit einem Bügelabstand s, der dem Abstand 
zwischen dem Fundament und dem untersten Bügel entspricht, bestimmt. Ausserdem 
werden zur Ermittlung der Effektivität der Umschnürung (ebenfalls Faktor kcon) alle 
Längsbewehrungsstäbe angerechnet, da diese durch das Fundament in Querrichtung 
gehalten sind. Der Längsbewehrungsabstand der gegen Knicken gesicherten Stäbe sl,c 
entspricht somit dem Längsbewehrungsabstand sl. In Längs- (x) bzw. Querrichtung (y) 
der Bügel wird die Spannung f’lx/y=kconvx/yfyv angesetzt. Das Dehnungslimit nach 
Gleichung (3) wird für einen quadratischen Bereich am Rand des Stützenquerschnittes 
ermittelt, das heisst mit h = b, siehe auch Abb. 3. Der Abstand der Längsbewehrung an 
den langen Seiten der Stütze beträgt sl = 80mm; an der Stirnseite wird als Abstand ein 
Drittel des Abstands der beiden in den Ecken des Bügels gehaltenen 
Längsbewehrungsstäbe angesetzt.  

 

Abb. 3: Berücksichtigter Randbereich zur Bestimmung des Dehnungslimits bei Stützen 
mit Längsbewehrungsstoss. 

Berechnung 

hcon = 350mm – 28mm = 322mm  
bcon = 350mm – 2·28mm = 294mm 
s = 75mm 
sl1 = (350mm – 2·25mm – 2·6mm -14mm)/3 = 98  
sl2 = 80mm 
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  → kcon = 0.70 
f’ll = 0.7· (2·28.3mm2 / (294mm·75mm))·528MPa = 0.95MPa  (2 dbv = 6mm) 
f’lq = 0.7· (28.3mm2 / (322mm·75mm))·528MPa = 0.44MPa (1 dbv = 6mm) 

f’l = (0.44 + 0.95)MPa / 2 = 0.69MPa 

௖݂௖ = 35.2 ቆ−1.254 + 2.254ට1 + ଻.ଽସ∙଴.଺ଽଷହ.ଶ − 2 ∙ ଴.଺ଽଷହ.ଶቇ = 39.8MPa 

  →cc = cu,St = 0.002 (1 + 5(39.8 / 35.2 – 1)) = 0.0033 
 

Abb. 4 zeigt die auf Basis der genannten Materialmodelle und Berechnungsannahmen 
ermittelte Momenten-Krümmungsbeziehung des Querschnittes und die Krümmungen, bei 
denen die berechneten Dehnungslimits erreicht sind. 

 

Abb. 4: Momenten-Krümmungsbeziehung des betrachteten Querschnittes. Die 
Krümmungen, bei denen die Dehnungslimits für Stützen mit Stoss cu,St, Beton cu und 
Bewehrung su erreicht sind, sind markiert. 

 

Länge des plastischen Gelenkes 
Die Länge des plastischen Gelenkes wird mit der von [4] vorgeschlagenen Gleichung 
berechnet: 

 . . . .p s
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PL 0 2h 0 05L 1 1 5 0 8h
A f

 
     

 
 (1) 

Bei den hier betrachteten Stützen wurde während der Versuche eine Vertikallast von 
P = 1300kN aufgebracht. Zusammen mit dem Gewicht der Stütze und des Aufbaus ergibt 
sich eine Vertikallast von circa P = 1365kN.  

Berechnung ܮ௣ = ሺ0.2 ∙ 1.5 + 0.05 ∙ 4.5ሻm൭1 − 1.5	 ൬ 1.3651.5 ∙ 0.35 ∙ 35.2൰൱ = 0.47m 

       ≤ 0.8 ∙ 1.5m = 1.2m 
Berechnung der Biegeverformung 
Die Biegeverformung wird mit der Momenten-Krümmungsbeziehung und der Länge des 
plastischen Gelenkes wie folgt berechnet: 
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 (5) 

In den Gleichungen bezeichnet ‘
y die Krümmung bei welcher erstmaliges Fliessen 

auftritt. Erstmaliges Fliessen wird durch das Erreichen der Fliessdehnung der Bewehrung 
in der Zugzone oder das Erreichen einer Betondehnung von c = 0.002 in der Druckzone 
des Querschnittes definiert. Im betrachteten Fall wird die Fliessdehnung der Bewehrung 
zuerst erreicht. Die Fliesskrümmung ist zur Veranschaulichung ebenfalls in Abb. 4 
eingetragen. Die Biegeverformung wird mittels Gleichung (5) bis zum Erreichen der zuvor 
bestimmten Dehnungslimits berechnet, siehe Abb. 5. 

Bei einer Stütze mit Bewehrungsstoss wird angenommen, dass der Widerstand bei 
Erreichen des Dehnungslimits auf den Widerstand abfällt, der durch die maximal 
mögliche Exzentrizität der Normalkraft definiert ist. Dieser wird wie folgt berechnet: 

.
c

s c c

h aP PV a
L 2 0 85 f b


 mit  (4) 

Berechnung 

a = 1.365MN / (0.85·35.2MPa·0.284m) = 0.16m 
V = (1365kN / 4.5m)·((1.5m – 2·0.033m) – 0.16m) / 2 = 193kN  

 

 

Abb. 5: Biegeverformung einer Stütze ohne und mit Bewehrungsstoss am Fuss. 

 

Schubverformungen 
Die Schubverformungen werden über ihr Verhältnis zu den Biegeverformungen in der 
Modellierung berücksichtigt. Dieses Verhältnis wird mit einem modifizierten Ansatz nach 
[8] abhängig von der Axialdehnung im Schwerpunkt des Querschnittes l und den Längs- 
und Querbewehrungsgehalten, l und v, abgeschätzt: 
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  (6) 

Die vierte Wurzel im Nenner dieser Gleichung entspricht dem Tangens des in der 
Berechnung verwendeten Risswinkels . Zur Berücksichtigung der Beobachtung, dass 
Bauteile mit geringem Schubwiderstand grössere Schubverformungen aufweisen, wird 
wie in [28] vorgeschlagen, der Korrekturfaktor  auf Basis des Schub-Zugwiderstandes Vn 
nach [10] sowie des Stegdruckwiederstandes Vwc gemäss EC2 6.2.3 (3) [11] 
berücksichtigt: 
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Bei Längsbewehrungsgehalten l > 2.5% wird der Term (0.5 + 20l) zu 1.0 gesetzt. Der 
Term (3 – Ls/h) berücksichtigt nur einen Übergang zwischen den Schubschlankheiten 1.5 
bis 2.0, d.h. 1 ≤ (3 – Ls/h) ≤ 1.5. Im Berechnungsbeispiel ist Ls/h=3 und somit der 
einzusetzende Wert gleich 1.0. Der Anteil der Axiallast P wird nur im Fall einer Druckkraft 
berücksichtigt und ist andernfalls gleich null. Für den inneren Hebelarm z und die Höhe 
der Druckzone xc werden hier die zum maximalen Moment gehörigen Werte aus der 
Querschnittsanalyse verwendet. Zur Ermittlung des Korrekturfaktors  wird hier, sofern in 
Gleichung (8) nicht anders spezifiziert, der gleiche Risswinkel wie in Gleichung (7) 
angesetzt. Falls die Berechnung zum Beispiel mit Excel durchgeführt wird, kann der 
Korrekturfaktor abhängig von der jeweiligen Horizontalkraft V berechnet werden. Dies 
wurde im hier dargestellten Berechnungsbeispiel getan. In der folgenden Berechnung ist 
der Faktor exemplarisch für den Maximalwert Vmax = Mmax/Ls ermittelt. Die Berechnung des 
Verhältnisses der Schub und Biegeverformungen wurde mit Excel durchgeführt und ist in 
Abb. 6 abhängig von der Axialdehnung dargestellt.  

 

 

Abb. 6: Verhältnis der Schub- zu Biegeverformungen. 

 

Berechnung 

xc = 0.322mm  

0

0.05

0.1

0.15

0.2

0.25

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

 s
/

fl
[-

]

Axialdehnung l [-]

cu 
erreicht

'y 
erreicht



662  |  Seismic Safety of Existing Bridges – Cyclic Inelastic Behaviour of Bridge Piers

September 2014 27 

h – xc – c = 1500 – 322 – 25 = 1153mm 
z = 0.87m (aus Querschnittsanalyse) ௡ܸ,௩ = 	0.0008 ∙ 0.35m ∙ 528MPa ∙ 1.153m ∙ cot 30° = 295kN ௡ܸ,௖ = ሺ0.5 + 20 ∙ 0.0123ሻ0.05√35MPa ∙ 0.8 ∙ 1.5m ∙ 0.35m = 93kN 

௡ܸ,௣ = 1300kN ሺ1.5 − 0.322ሻm2 ∙ 4.5m = 	170kN 

  → Vn = 295 + 93 + 170 = 558kN 
 

tan ߠ = 	 ඩ0.0008 + 20025 ∙ 0.0123 ∙ 0.00080.0123 + 20025 ∙ 0.0123 ∙ 0.0008ర = 0.516	 
  → Vwc = 0.35m·0.87m·0.6 35MPa / (1/0.516+0.516) = 2.6MN 
  →  = 2900kNm / 4.5m (1 / 558kN + 1 / 2600kN) = 1.4 
 

Gesamtverformung 
Die Gesamtverformung setzt sich aus den Biege- und Schubverformungen zusammen. 
Bis zum Fliessbeginn der Längsbewehrung werden die Schubdeformationen jedoch als 
vernachlässigbar betrachtet und lediglich die Biegedeformationen berücksichtigt. Daher 
kann bei Fliessbeginn ( y  ) die Gesamtdeformation wie folgt abgeschätzt werden:  

 ,

2
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y fl y y
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ML
F

3 L
         (8) 

Im inelastischen Bereich, das heisst für Krümmungen y  , wird die Gesamtverformung 

wie folgt berechnet: 
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  (9) 

Gleichungen (9) und (10) werden mit den zuvor bestimmten Grössen (Lp, s/fl etc.) 
ausgewertet. Die daraus resultierenden Kraft-Verformungsbeziehungen sind in Abb. 7 
dargestellt. Der Knick in der Kraft-Verformungsbeziehung wird durch das 
Vernachlässigen der als klein eingeschätzten Schubverformungen vor Fliessbeginn 
verursacht. 
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Abb. 7: Last-Verformungsbeziehung je eines Versuchskörpers mit und ohne Stoss. 
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Résumé  

Les ponts existants peuvent, selon les normes utilisées pour les dimensionner, avoir été 
construits sans inclure de dimensionnement sismique. En Suisse, comme dans d’autres 
pays où la sismicité est faible, les normes parasismiques n’ont été introduites que 
récemment, puisque le danger a été longtemps sous-estimé. En conséquence, il se peut 
que les ponts existants aient une faible capacité de déformation, de par leur type 
structural ou leurs détails de conception. C’est pourquoi un projet en deux parties visant à 
évaluer les ponts existants a été initié. La première partie de ce projet [1], [2]  a été 
menée à l’ETHZ et visait à estimer la déformabilité requise. Celle-là s’est concentrée sur 
la modélisation des ponts et l’identification des configurations critiques pour les piles de 
pont. Dans cette partie trois points critiques ont étaient identifiés et concernent (i) les 
zones de recouvrement dans la région potentiellement plastique au-dessus des 
fondations, (ii) les faibles taux d’armature transversales et (iii) l’absence d’un confinement 
par frettage. La vérification de ces ponts se fait notamment par des méthodes basées sur 
la déformation, en comparant les déformations entraînées par un séisme et la capacité 
de déformation [1], [2]. 

La deuxième partie de ce projet de recherche, exposée dans le présent rapport, 
concerne l’estimation de la capacité de déformation de piles rectangulaires ayant un 
élancement d’environ 1 à 3. Puisque l’évaluation de la déformabilité doit être appliquée 
par des ingénieurs à un grand nombre de ponts, les modèles d’estimation de la capacité 
de déformation doivent être relativement simples à mettre en œuvre tout en donnant des 
résultats acceptables et pas trop conservateurs. Le présent travail a pour but de 
contribuer au développement de tels modèles. Les études sur les piles avec les manques 
constructifs susmentionnés qui ont été menées à l’ETHZ dans le cadre des deux parties 
du projet de recherche [1], [3] ont fourni les données expérimentales de base pour la 
vérification et la validation des modèles. Deux approches ont été choisies pour une étude 
approfondie sur la base des critères mentionnés : la modélisation avec des rotules 
plastiques et l’utilisation d’un modèle cinématique pour les murs critiques soumis à un 
effort tranchant. 

La première partie de ce rapport concerne la modélisation avec des rotules plastiques. 
D’abord un aperçu des équations est donné qui définissent l’état de rupture et servent à 
estimer la longueur des rotules plastiques, à trouver la déformation en flexion et en 
cisaillement ainsi qu’à calculer l’allongement limite. Un procédé permettant de déterminer 
la relation force-déplacement des piles est ensuite développé sur la base des données 
expérimentales. Cela permet de prendre en compte l’influence des zones de 
recouvrement et des déformations en cisaillement sur le comportement. 

La deuxième partie de ce rapport  traite de la dégradation du comportement au 
cisaillement ainsi qu’à l’élaboration d’un modèle cinématique pour des piles 
rectangulaires sensibles au cisaillement. Ce modèle se base sur la cinématique induite 
par la formation de fissures de cisaillement et a été développé par ailleurs [13]. Ce 
rapport valide son application aux piles rectangulaires. En outre, l’influence de quelques 
caractéristiques, comme le taux d’armature ou l’élancement, est mise en évidence, en 
particulier en ce qui concerne la capacité de déformation.  

La comparaison des prédictions avec les résultats expérimentaux a montré que la 
modélisation par des rotules plastiques, malgré sa simplicité, donne de bons résultats 
pour les murs considérés dans cette étude dont le comportement n’est que partiellement 
déterminé par la flexion. Ce modèle donne une estimation plutôt conservatrice de la 
capacité de déformation, qui correspond globalement à la déformation sous la charge 
maximale. Pour considérer également la branche descendante de la réponse 
correspondant à une structure dégradée, il faudrait faire appel au modèle cinématique qui 
permet de tenir compte des ruptures dues à l’effort tranchant ainsi qu’aux efforts axiaux.  
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Structure du Rapport 
Les paragraphes qui suivent résument les points principaux de ce rapport. La 
modélisation avec des rotules plastiques est présentée en premier. Pour cela, les 
principes de base et les grandeurs et formules nécessaires à cette modélisation sont 
brièvement exposés. Par la suite, une introduction aux bases des modèles cinématiques 
pour le calcul du comportement piles de pont sensibles au cisaillement est proposée. Ce 
résumé détaillé est présenté en allemand et en français. Le rapport de recherche 
proprement dit, en anglais, contient des explications détaillées et les bases des modèles 
présentés. 

Modélisation avec des rotules plastiques 
Introduction 
Cette partie présente les points nécessaires à la modélisation par des rotules plastiques 
de piles rectangulaires à section allongée en forme de murs. Dans ceux-ci, la zone 
plastique au pied de la pile est représentée par une rotule plastique, au niveau de 
laquelle une courbure plastique constante est supposée. Ceci est une représentation 
simplifiée de la variation approximativement linéaire de la courbure plastique, souvent 
observée expérimentalement, figure 1. Selon cette représentation, p est la courbure 
plastique, 'y la courbure lors de la première plastification de l’armature, b la courbure au 
pied de la pile et sp la courbure résultant de la propagation de l’allongement dans les 
fondations. En intégrant le profil de courbure, cette approche avec des rotules plastiques 
permet de déterminer les déformations en flexion. Les déformations en cisaillement 
peuvent également être considérées, puisqu’elles sont proportionnelles aux déformations 
de flexion dans le domaine inélastique. 

 

Figure 1: Pile rectangulaire en forme de mur sous charge, profil de courbure effectif et 
approximation par le modèle de la rotule plastique. 

Dans ce qui suit, la détermination de la longueur de la rotule plastique basée sur les 
résultats expérimentaux est d’abord présentée. Ensuite des recommandations pour 
l’analyse de la relation moment-courbure et de la limite d’allongement sont données. Ces 
limites servent pour l’estimation des capacités de courbure. Cela mène à la détermination 
des déformations en flexion et en cisaillement, dont la somme donne la déformation 
totale. Finalement, des indications sont données pour la prise en compte d’un 
recouvrement de l’armature longitudinale au pied de la pile. 

Choix de la longueur de la rotule plastique 
La rotule plastique est une variable de modélisation qui décrit dans ce modèle la zone 
inélastique d’un élément de construction. Sur la base des essais effectués dans le cadre 
des deux parties de cette recherche [1], [3], diverses équations pour la détermination de 
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φb

Ls

M

My
φ′y

Lp

φp

≈ +

V 
P 

Ls 

P 
V

M 



662  |  Seismic Safety of Existing Bridges – Cyclic Inelastic Behaviour of Bridge Piers

September 2014 31 

la longueur des rotules plastiques dans les murs ont été évaluées. La meilleure 
concordance avec les données expérimentales a été obtenue avec l’expression suivante 
[4] : 

  . . . .p s
g c

PL 0 2h 0 05L 1 1 5 0 8h
A f

 
     

 
  (1) 

Cette équation tient compte de la hauteur de la section h, de la portée du cisaillement Ls, 
et de l’effet de la charge axiale P qui diminue la longueur de la rotule. La charge axiale 
est considérée comme charge relative, c’est-à-dire qu’elle est divisée par le produit de la 
surface de la section Ag avec la résistance du béton en compression fc. En revanche, la 
contribution de la deformabilité des barres longitudinales dans la fondation n’est pas 
incluse (« strain penetration »). La comparaison avec les données expérimentales dans 
la zone inélastique a montré que ce terme est en général faible et que la déformation 
totale des piles peut être estimée sans en tenir compte. 

Relation entre moment et courbure et allongement limite 
La relation moment-courbure a été obtenue au moyen d’une analyse par section avec 
l’hypothèse que toutes sections planes restent planes. La Fig. 2 résume les paramètres 
principaux de l’analyse par section. En plus du profil d’allongement admis pour l’analyse 
par section et de la relation moment-courbure pour un des corps d’essai considérés, la 
figure montre les lois constitutives des matériaux pour le béton et l’acier. Pour le béton, la 
relation contrainte-déformation pour du béton confiné selon [5] est utilisée. Pour l’acier, 
une relation bilinéaire entre contrainte et allongement est utilisée ; elle ne tient pas 
compte du raidissement dû à la tension (« tension stiffening »). 

 

 

a) Section et profil 
d’allongement. 

b) Relation moment-courbure. c) Lois constitutives. 

Figure 2: Paramètres de l’analyse par section. 

La capacité de déformation d’un élément de construction est définie en général par le 
point où la limite d’allongement est atteinte au niveau de la rotule plastique. On suppose 
qu’en cas de dépassement de cet allongement les dommages dans la zone plastique 
sont suffisants pour entraîner une chute de la résistance donnée, cela définie un état de 
ruine. Une perte de 20% de la résistance à l’effort tranchant est souvent définie comme 
une rupture. Les allongements limites ci-dessous pour le béton cu,cyc et l’acier su,cyc [6] ont 
été développés pour cette chute de résistance : 
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Dans ces équations, xc,con désigne la profondeur de la zone frettée soumise à la 
compression, hcon et bcon les dimensions de la section confinée, v le taux d’armature 
transversal, fyv la limite d’écoulement de l’armature transversale, fcc la résistance à la 
compression du béton confiné, s l’espacement de l’armature transversale et sl,c 
l’espacement des barres d’armature longitudinale, dont le flambage est empêché par des 
crochets ou autres. La limite d’allongement de l’acier n’a pas dû être vérifiée 
expérimentalement puisque une rupture de l’armature longitudinale n’était pas 
déterminante dans les essais. Les extrémités des piles de ponts considérées n’étaient 
pas confinées. Les essais ont montré que des fondations qui restent élastiques 
entraînent un certain frettage du pied du mur qui devrait être considéré pour l’évaluation 
de la capacité de déformation du béton. Les dimensions de la section confinée sont ici 
admises comme égales à celles du noyau défini par la position de l’armature 
longitudinale de la pile. La déformation correspondant à la déformation atteinte juste 
après que le matériau ne cède sous une charge maximale est définie comme capacité de 
déformation pour les piles de section allongée considérés ici, en utilisant l’allongement 
limite susmentionné. La prise en compte de la capacité de déformation après le pic de la 
charge horizontale n’est pas possible avec le modèle de la rotule plastique. Cela est dû 
notamment au fait que l’hypothèse de sections planes admise dans le modèle des rotules 
plastiques est de moins en moins valable lorsque les dommages subis par l’élément de 
construction augmentent et aussi au fait qu’une partie des chutes de résistance sont à 
rapporter à une dégradation du mécanisme de cisaillement, ce qui n’est pas couvert par 
ce modèle. Si un calcul plus précis de la capacité de déformation après le pic de la 
charge horizontale est nécessaire, c’est le modèle cinématique décrit plus loin qui devrait 
être employé. 

Prise en compte des zones de recouvrement 
Un recouvrement de l’armature longitudinale au pied de la pile, là où se forme la rotule 
plastique, peut entraîner une chute rapide de la résistance à l’effort tranchant en cas de 
défaillance du recouvrement. Si le recouvrement n’est pas confiné et qu’il est assez long 
pour transmettre un effort de traction correspondant à la résistance à la traction de l’acier, 
sa rupture peut être introduite comme un endommagement du béton en compression. Si 
le béton n’est pas confiné, le transfert de l’effort entre les barres de recouvrement est 
assuré uniquement par le béton. Sa résistance à la traction et en conséquence sa 
capacité à transmettre l’effort sont réduites par l’apparition de fissures de compression 
dans le matériau. Sous charges cycliques, l’apparition de fissures de fendage est 
favorisée par l’alternance de charges de compression et de charges de traction, ce qui 
peut entraîner une perte de la résistance du recouvrement. 

L’allongement limite pour une rupture du béton en compression peut être estimé par 
l’équation donnée dans [5] pour du béton confiné : 
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  (3) 

kcon est déterminé d’après l’Éq. (2) avec un espacement des étriers s correspondant à la 
distance entre la fondation et l’étrier le plus bas. Cela signifie que la fondation est 
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considérée comme un étrier. En outre, toutes les barres de l’armature longitudinale sont 
prises en compte dans le calcul du confinement (facteur kcon également), puisque celles-ci 
sont tenues transversalement par la fondation. L’écartement des barres renforcées 
contre les pliures sl,c correspond ainsi à l’écart de l’armature sl. Une contrainte 
f’lx/y=kconvx/yfyv est admise dans la direction longitudinale (x), respectivement transversale 
(y) de l’étrier, qui confine le béton. Le taux d’armature transversale et le nombre de 
barres considéré dans l’armature longitudinale sont ici déterminés pour une zone carrée 
en bordure de la section considérée, ceci est dû au fait qu’aucune zone périphérique 
confinée n’était pas présente pour les piles étudiés. L’allongement limite le plus faible 
d’après les Éq. (2)-(3) est déterminant pour estimer la capacité de déformation lors de 
défaillances du recouvrement.  

Une fois le cisaillement associé à cette limite atteint, une chute immédiate de la 
résistance à l’effort tranchant jusqu’au niveau d’une capacité résiduelle déterminée par le 
décalage de la charge longitudinale est admise. Cette capacité est déterminée par 
l’équation suivante : 

 
.

c

s c c

h aP PV a
L 2 0 85 f b


 mit   (4) 

où hc et bc désignent les dimensions du volume délimitées par la position de l’armature 
longitudinale, c’est-à-dire les dimensions de la section de la pile sans le recouvrement de 
béton. 

Déformations en flexion 
Les déformations en flexion peuvent être déterminées avec la démarche dite affinée 
décrite par [7]. Cette démarche permet de déterminer l’ensemble de la courbe de charge-
déformation contrairement à l’approximation bilinéaire communément utilisée. Suivant 
cette démarche, une interpolation linéaire entre l’origine et la déformation en flexion lors 
de la première plastification ’y,fl (courbure correspondante ’y) est effectuée (voir aussi 
figure 2b). La courbure ’y est définie comme la courbure pour laquelle la barre 
d’armature la plus excentrée plastifie pour la première fois (allongement correspondant 
s=fy/Es), ou lorsque la déformation spécifique du béton correspondant à la contrainte de 
compression maximale (typiquement c=0.002) est atteinte pour la première fois dans le 
bord le plus excentré de la section. La déformation en flexion fl est ensuite calculée en 
fonction de la courbure déterminée par l’analyse par section. 
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  (5) 

Les déformations en flexion peuvent être déterminées avec ces équations jusqu’au point 
défini par la courbure maximale fu, qui dépend de l’allongement limite des Éq. (2)-(3). 
Cette déformation en flexion correspond à la capacité de déformation définie par le 
modèle des rotules plastiques, comme cela a déjà été mentionné. Les Éq. (1)-(5) 
permettent de déterminer les déformations en flexion représentées comme par exemple 
sur la figure 3 pour une pile à armature longitudinale traversante (VK6) ainsi que pour la 
même pile mais avec recouvrement de l’armature longitudinale (VK5). Les déformations 
en flexion mesurées expérimentalement ainsi que les points, où l’allongement limite tel 
que défini par les Éq. (2)-(3) a été dépassé, sont représentés en guise de comparaison. 
Les déformations en flexion sont reportées comme allongements moyens =fl/Ls, en 
pourcent. 
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Figure 3: Déformations en flexion calculées et mesurées pour deux structures testées 
avec (VK5) et sans (VK6) recouvrement [3]. 

Déformations en cisaillement 
La modélisation avec des rotules plastiques est d’abord conçue pour prévoir la 
déformation en flexion d’un élément de construction, comme cela est présenté dans la 
première section. Les déformations en cisaillement peuvent cependant aussi être 
considérées par cette modélisation dans la mesure où elles restent, en règle générale, 
fonction de la déformation en flexion dans le domaine inélastique. Les expériences 
menées dans le cadre de ce projet ont montré que les déformations en cisaillement 
restent relativement petites jusqu’à atteindre la charge de plastification F’y et ne doivent 
pas nécessairement être prises en compte. Des déformations en cisaillement 
correspondant jusqu’à 30% de la déformation en flexion ont cependant été déterminées 
dans le domaine inélastique pour des piles sensibles au cisaillement. Négliger ces 
déformations entraînerait par conséquent une sous-estimation de la capacité de 
déformation. 

Pour les structures expérimentales considérées ici, une bonne estimation des rapports 
entre déformation en cisaillement et en flexion a été obtenue avec une démarche 
modifiée inspirée de [8]. Ces équations donnent la relation entre les déformations en 
cisaillement et en flexion en utilisant la courbure  et l’allongement longitudinal l au 
centre de la section. Ces deux valeurs permettent de déterminer les déformations en 
cisaillement correspondant à des déformations en flexion dans le domaine plastique. Ci-
dessous, les déformations en cisaillement dépendent de l’angle de fissuration attendu; 
plus les fissures sont inclinées, c’est-à-dire plus il se forme de fissures liées au 
cisaillement, plus les déformations de cisaillement sont importantes. L’angle de 
fissuration est ici estimé d’après les taux d’armature longitudinale et transversale l et v 
[9]. Le rapport de la déformation en cisaillement sur la déformation en flexion en 
dépendance de l’allongement longitudinal au centre de la section est donc donné par: 
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  (6) 

Le facteur de correction, basé sur la résistance à la traction en cisaillement Vn donné par 
[10] ainsi que sur la résistance à la compression de l’âme Vwc donné par EC2 6.2.3 (3) 
[11], est ajouté pour tenir compte de l’observation des éléments de construction de faible 
résistance au cisaillement subissant des déformations plus importantes : 
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Le bras de levier interne z et la hauteur de la zone de compression xc peuvent être 
déterminés par l’analyse de section. Pour des taux d’armature longitudinale l > 2.5%, le 
terme (0.5+20l) est approché à 1.0. Le terme (3-Ls/h) ne considère qu’une transition entre 
des ratios de cisaillement de 1.5 à 2.0, c’est-à-dire 1 <(3-Ls/h)<1.5. La part de charge 
longitudinale n’est considérée que dans le cas d’une force de compression et est définie 
nulle sinon. 

Cette démarche de calcul des rapports entre déformation en flexion et en cisaillement 
s/fl a permis de déterminer les résultats représentés sur la figure 4 pour les sept 
structures expérimentales considérées ici [1], [3] évaluées à la charge maximale. 

 

Figure 4: Rapports calculés et expérimentaux entre déformations en flexion et 
déformations en cisaillement évaluées à la charge maximale (expériences [1], [3]). 

La capacité de déformation résultante 
La déformation résultante se compose de la déformation en flexion et la déformation en 
cisaillement. Les déformations en cisaillement sont considérées comme négligeables 
jusqu’au début du flambage de l’armature longitudinale et les déformations en flexion 
sont alors les seules prises en compte. La déformation résultante peut donc être estimée 
comme suit à la limite élastique ( y  ) : 
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Dans le domaine inélastique, c’est-à-dire pour des courbures (>’y) la déformation 
résultante est calculée comme suit : 

 s
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fl s
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  (9) 

Les déformations en flexion ainsi que les rapports entre déformation en flexion et en 
cisaillement dans cette équation sont déterminées avec les Éq. (1) et (5)-(7) pour des 
courbures inférieures à celle où l’allongement limite selon les Éq. (2)-(3) est atteint. Pour 
les deux structures expérimentales considérées ci-dessus, la figure 5 représente les 
courbes de charge-déformation obtenues. 
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Figure 5: Déformations résultantes calculées et expérimentales pour une structure 
expérimentale avec (VK5) et sans (VK6) recouvrement. 

Modèle cinématique 
Introduction 
Le modèle cinématique se base sur la cinématique induite par la formation de 
nombreuses fissures de cisaillement. Cela signifie qu’il ne peut être appliqué à des 
éléments de construction clairement définis par leur résistance en flexion ou définis par 
un recouvrement à la base. Le modèle a été développé en se basant sur un modèle 
semblable pour des poutres avec une grande hauteur de section [12]. Le modèle poutre 
n’utilise que deux paramètres pour décrire le champ de déformation. Pour des piles à 
section allongée, un troisième paramètre est introduit, d’où le nom « 3 Parameter 
Kinematic Theory (3PKT) ». Une introduction détaillée à cette théorie n’est pas possible 
dans le cadre de ce résumé. Le lecteur est prié de s’en référer à la publication [13], où la 
théorie a été présentée, ainsi qu’au chapitre 5 du rapport qui suit, qui contient une 
validation de la théorie.  

Dans la suite de ce résumé, les fondements de la théorie sont brièvement expliqués et 
les prédictions obtenues pour les courbes de charge-déformation de quelques piles sont 
comparées aux données expérimentales. Avec cette théorie, les déformations peuvent 
être prédites jusqu’au point de dégradation du mécanisme de cisaillement, et donc 
jusqu’à la perte de la résistance aux forces transversales et longitudinales. Une meilleure 
estimation des capacités de déformation réelles d’un élément de construction avant 
d’atteindre la charge maximale est alors possible. 

Fondements de la modélisation 
La figure 6 donne la cinématique admise dans ce modèle ainsi que les mécanismes de 
charge considérés. Le schéma de gauche montre la déformation supposée de la pile. Il 
est  supposé qu’une zone radialement fissurée se forme au-dessous de la fissure de 
cisaillement, la zone du dessus restant d’un bloc. Au pied de la pile, juste au-dessus de 
la fissure de cisaillement, il est également supposé la formation d’une zone où se 
concentrent les dommages du bloc supérieur. Le champ de déformation total est 
représenté par les trois paramètres s,avg, c et cv. Le premier paramètre s,avg désigne 
l’allongement moyen de l’armature longitudinale, qui influence l’allongement du côté de la 
pile soumis à la traction ainsi que la rotation du bloc supérieur. Les deux paramètres 
restants c et cv désignent respectivement la translation et le déplacement vertical du 
bloc supérieur causés par la déformation de la zone endommagée au pied du bloc. 
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Figure 6: Fondements de la théorie cinématique. 

La deuxième moitié de la figure 6 montre les mécanismes de charge considérés dans la 
théorie. Dans ce modèle, toutes les forces sont représentées comme des ressorts dont 
les lois caractéristiques découlent des propriétés des matériaux. Inversement, les 
allongements des ressorts découlent des déformations déterminées par les trois 
paramètres susmentionnés. 

Les armatures longitudinale et transversale sont représentées chacune comme un 
ressort fixé au centre de gravité de l’armature correspondante et dont les forces Fst et 
respectivement Fs résultantes découlent des allongements s et v dépendants du champ 
de déformation. L’influence des goujons est considérée, en supposant que l’armature 
longitudinale est sous tension au niveau des bords de deux fissures de cisaillement 
voisines. La force Fd exercée par les goujons découle alors du profil des moments étant 
donnée la longueur lk, qui dépend du déplacement relatif entre les deux bords voisins de 
la fissure d. Enfin, la force résultante Fci de l’engrainement le long des fissures, dépend 
de la largeur w et de la dislocation s de celles-ci. 

En ce qui concerne la zone fortement endommagée (CLZ=Critical Loading Zone) au pied 
du bloc supérieur, plusieurs forces s’y appliquent. Premièrement, il y a l’effort de 
compression du béton FCLZ résultant de la déformation CLZ de cette zone, dont la 
direction dépend de la translation ainsi que du raccourcissement de la zone (c et cv). 
Puis, selon l’élancement de la pile et la charge longitudinale appliquée, une force de 
contact peut apparaître entre la pointe du bloc supérieur et la zone inférieure. Une force 
de friction, et donc une résultante Fcf découlent d’un glissement vers le bas du bloc 
supérieur. Une force de compression Fsc résultant de la déformation sc de l’armature 
longitudinale s’applique aussi à cet endroit de la pile. 

Dans la zone radialement fissurée au-dessous de la fissure de cisaillement principale 
apparait un effort de compression du béton Fc au pied de la pile. Les composantes des 
forces déjà mentionnées s’y appliquent aussi et sont transmises au niveau de la fissure 
critique. 

Le champ de déformation et les composantes des forces peuvent être calculés pour 
chaque distance de dislocation de l’extrémité en utilisant les conditions d’équilibre et de 
compatibilité. La résultante transversale V des forces peut être alors déduite. D’après 
cette théorie, des défaillances apparaissent lorsque la zone au pied de la pile est trop 
endommagée, entraînant une chute de la force résultante FCLZ. Ceci va de pair avec une 
déformation importante de cette zone, qui conduit à un glissement du bloc supérieur le 
long de la fissure de cisaillement. Ce glissement entraîne une intense force Fci due à 
l’imbrication des fissures qui compense finalement la force FCLZ. Pour des glissements 
encore plus importants et pour des fissures plus larges, ce mécanisme de compensation 
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est perturbé. Cela conduit à une perte de résistance aux forces transversales et charges 
longitudinales de la pile. 

Présentation des résultats 
La figure 7 représente les résultats obtenus avec le modèle cinématique pour deux 
structures testées dans le cadre de ce projet de recherche. La comparaison avec les 
données expérimentales montre non seulement que la résistance aux forces 
transversales est bien couverte mais aussi que la partie de la courbe de charge-
déformation correspondant à une structure est fortement dégradée. La contribution des 
différentes composantes transversales des forces est également visible sur ces graphes. 
Ceci illustre le mécanisme de défaillance décrit plus haut : lorsque la composante 
transversale de la force VCLZ diminue, une augmentation de la composante due à 
l’imbrication des fissures est observée dans un premier temps avant une chute de 
charge. Cela se traduit donc par une perte de résistance dans la pile. 

 

Figure 7: Représentation des résultats obtenus avec la théorie cinématique pour deux 
structures testées. 

Influence des paramètres choisis sur la capacité de déformation 
Cette partie utilise la 3PKT pour décrire l’influence de deux paramètres, qui ont 
également fait l’objet de recherches expérimentales, sur les capacités de déformation. 
D’un côté, l’influence de l’armature transversale est étudiée, de l’autre, l’influence de 
l’élancement. Les armatures transversales VK3 (taux d’armature 0.08%) et VK7 (taux 
d’armature 0.22%) sont étudiées. Conformément aux prévisions, la capacité de 
déformation augmente avec le taux d’armature transversale, tandis que la résistance aux 
charges reste inchangée, voir figure 8. Cela permet d’expliquer pourquoi aucune 
défaillance en cisaillement prématurée n’apparait pour de faibles taux d’armature 
transversale, alors que la capacité de déformation finale est plus vite atteinte. 
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Figure 8: Influence du taux d’armature transversale sur le comportement des structures 
testées. 

Une comparaison avec d’autres expériences [14] a toutefois montré que l’importance de 
cette influence dépend fortement de la configuration de la structure. Alors que pour des 
structures plus élancées VK3 et VK7 (Ls/h=2.2) une forte augmentation de la capacité de 
déformation correspondant à une résistance résiduelle de 80% a été observée et 
calculée, l’influence positive de l’armature transversale pour des structures plus courtes 
[14] (Hirosawa (1975) dénoté « Hir » en figure 8 ; Ls/h=1.0) est nettement moins 
importante. 

Un changement de l’élancement modifie aussi bien la résistance aux forces transversales 
que les capacités de déformation. Pour des élancements plus élevés, la résistance aux 
forces transversales décroit alors que la capacité de déformation augmente, voir figure 9. 
Les calculs menés avec l’aide de la 3PKT pour les structures testées VK3 et VK6 avec 
des propriétés moyennes pour les matériaux et un élancement variable montrent de plus 
une nette augmentation des capacités de déformation avec des élancements de 1.5 et de 
2.0. La comparaison, sur la figure 9, des courbes de charge-déformation des structures 
testées montre que, pour des élancements inférieurs à environ 1,5, un comportement 
plutôt cassant domine, alors que des élancements plus élevés sont plutôt associés à un 
comportement ductile et à la formation d’un plateau d’écoulement. 

 

Figure 9: Influence de l’élancement sur le comportement des structures testées. 

Pour une discussion détaillée de l’influence des différents paramètres et pour une 
comparaison avec des estimations de la capacité de déformation obtenues par d’autres, 
le lecteur est renvoyé à la section 5.5 du rapport qui suit. 

Conclusions 
Comme présenté dans les sections précédentes, le modèle des rotules plastiques permet 
de prédire des courbes de charge-déformation jusqu’à des charges proches de la charge 
maximale. La démarche pour obtenir les courbes de charge-déformation de piles 
rectangulaires de section allongée est résumée dans ces lignes. C’est ce modèle qui est 
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recommandé pour estimer la capacité de déformation, car il donne une estimation plutôt 
conservatrice de la capacité réelle et est de plus facile et rapide à appliquer. Le modèle 
cinématique peut quand même être appliqué si, dans le cadre d’une vérification des 
capacités de déformation des piles d’un pont, il est considéré comme pertinent de 
considérer plus attentivement le domaine suivant le pic de charge de la réponse. Par 
exemple lorsque la capacité de déformation calculée avec le modèle de la rotule 
plastique est légèrement inférieure à la déformabilité requise prévue. Dans ce cas il faut 
cependant faire attention au fait que, d’un côté, l’implémentation est ardue et, de l’autre, 
la partie descendante de la courbe de charge-déformation est associée à une 
dégradation du mécanisme qui assure aussi la résistance aux charges longitudinales. Il 
faut donc déterminer au cas par cas à quel point les capacités de déformation prédites 
avec ce modèle devraient être exploitées.  
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Exemple de calcul 

Introduction 
Cette partie présente un exemple de calcul pour l’utilisation de la modélisation par des 
rotules plastiques, pour des piles de pont avec (VK5) et sans (VK6) recouvrement de 
l’armature longitudinale. La méthode sera détaillée pas à pas, et les différences entre les 
piles de pont avec et sans recouvrement seront explicitées. Les piles de pont utilisés en 
exemple sont les mêmes que ceux qui avaient également été étudiés en détail dans le 
rapport. 

Données des piles de pont 
La section des piles, pour lesquelles l’exemple de calcul sera conduit, ainsi que toutes les 
grandeurs nécessaires, sont présentées dans la figure 1. Il s’agit ici de deux piles 
rectangulaires avec une armature uniformément répartie dans la section. VK6 a une 
armature longitudinale continue, alors que celle de VK5, est recouverte directement au-
dessus de la fondation, sur une longueur de 60cm, cela équivaut à 43 fois le diamètre 
d’une barre. Mis à part le recouvrement de l’armature longitudinale, les deux piles ne se 
différencient que par une légère variation des valeurs du matériau. Pour l’exemple de 
calcul, celles du matériau de VK5 seront utilisées. 

 

Dimensions de la pile 
b / h / Ls = 0.35m / 1.50m / 4.50m 
 
Armature 
Longitudinale:    l = 1.23%  

                               42 barres dbl = 14mm, espacement sl = 80mm
Transversale:    v = 0.08%  
Étrier double     dbv = 6mm, espacement des étriers s = 200mm 
Enrobage:         cnom = 25mm 
 
Matériau 
Béton:              fc = 35.2MPa  
Armature longitudinale:       fy = 520MPa,  fu/fy = 1.17 
            su = 11% 
Armature transversale:        fy = 528MPa,  fu/fy = 1.29 
            su = 7.1% 
 

Figure 1: Dimensions et propriétés du matériau des piles de pont. 

 

Relation Moment-Courbure 
Une analyse moment-courbure de la section sera tout d’abord réalisée. Ceci peut par 
exemple être fait au moyen d’un programme comme Response2000 [94]. L’analyse 
utilisée dans cet exemple a été effectuée par un code Matlab [57]. 

La relation contrainte-déformation pour béton confiné selon Mander et al. [5] a été 
utilisée. Dans le cas considéré, bien que les étriers n’aient que des crochets à 90° et la 
section n’ait pas  des zones confinées, la capacité de reprise du moment estimée avec 
cette loi de comportement du matériau est réaliste même après avoir atteint la résistance 
en compression du béton. Comme le montre la figure 2, l’effet causé par les étriers 
présents sur la résistance en compression est faible. La courbe présentée ici pour le 
béton non confiné n’a été utilisée que pour le béton d’enrobage. C’est pourquoi il a été 
admis que celui-ci s’écaille, dès qu’un allongement de 4‰ est atteinte. Pour cette raison 
la courbe présentant la compression est nulle après avoir atteint un allongement de 4‰. 
Une relation contrainte-déformation bilinéaire a été utilisée pour l’acier, et le raidissement 
en traction (« tension-stiffening ») n’a pas été pris en compte. 
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Figure 2: Paramètres de l’analyse par section. 

 

Limites de déformation 
Armature longitudinale continue 

La relation moment-courbure est utilisée jusqu’à la courbure pour laquelle l’allongement 
limite, qui définit l’état de rupture, est atteinte. Pour le calcul des allongements maximales 
du béton cu,cyc et de l’acier su,cyc, les grandeurs suivantes sont utilisées pour une pile 
avec armature longitudinale continue [6]: 

 (10) 

   

Dans les équations, xc,con désigne la hauteur de la zone de béton comprimé confiné, hcon 
et bcon sont les dimensions de la section confinée, v le taux d’armature longitudinal, fyv la 
limite d’écoulement de l’acier d’armature, fcc la résistance en compression du béton 
confiné, s l’espacement de l’armature et sl,c l’espacement des barres de recouvrement 
longitudinales, dont le flambage est par exemple empêché par des crochets. Les 
dimensions de la section confinée et la profondeur de la zone comprimée seront 
calculées par la suite jusqu’au milieu des étriers. L’espacement entre deux barres est de 
même établi du centre d’une barre à l’autre. 

La hauteur de la zone comprimée considérée est la hauteur minimale établie par 
l’analyse par section, moins l’enrobage de béton, calculé jusqu’au milieu des étriers. Les 
quatre barres d’armatures longitudinales situées aux coins de la section sont considérées 
comme tenues par des étriers, et sont donc prises en compte pour la détermination (sl1) 
de kcon. Lors de la construction des piles, deux rangées de crochets ont par ailleurs été 
utilisées pour la stabilisation de la cage de recouvrement, au moyen desquels le 
recouvrement longitudinal est fixé. Ceci a aussi été pris en compte comme armature au 
flambage dans les calculs (sl2). Dans l’équation (2), la résistance du béton confiné devrait 
en principe être utilisée. Cependant, comme l’influence du confinement sur la résistance 
du béton est très faible pour les piles considérées ici, la résistance  fc du béton est 
utilisée. 
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Les déformations maximales suivantes sont donc calculées pour la section considérée : 

Calcul 

hcon = 1500mm – 2·25mm – 6mm = 1444mm  
bcon = 350mm – 2·25mm – 6mm = 294mm 
s = 200mm 
sl1 = 350mm – 2·25mm – 2·6mm – 14mm  = 284mm  
sl2 = (1500mm – 2·25mm – 2·6mm – 14mm)/3 = 478mm 
  → kcon =0.24 
xccon = 320mm – 28mm = 222mm  
௖௨ߝ	→   = 0.0035 + ቀ ଵଷଶ଴ቁయమ + 0.4 ଴.ଶସ	∙଴.଴଴଴଼∙ହଶ଼ଷହ.ଶ = 0.0049 

௦௨ߝ	→   = 0.375	 ∙ 0.11 = 0.041 

 

Recouvrement de l’armature longitudinale au pied de la pile 

Pour des piles avec recouvrement d’armature longitudinale, la plus petite des 
allongements calculés avec les équations (2) et (3) est utilisée comme allongement 
limite. 

 (3) 

௟݂ᇱ = 	݇௖௢௡ߩ௩ ௬݂௩ 
Dans cette équation, kcon est estimée d’après l’équation (2) avec un espacement des 
étriers s, correspondant à la distance entre la fondation et l’étrier le plus bas. Toutes les 
barres d’armatures longitudinales sont par ailleurs considérées pour le calcul de 
l’efficacité du confinement (également facteur kcon), car celles-ci sont tenues 
transversalement par la fondation. L’espacement sl,c entre deux barres d’armatures 
longitudinales dont le flambage est empêché correspond ainsi à l’espacement sl de 
l’armature longitudinale. Dans le sens longitudinal (x), respectivement transversal (y) aux 
étriers, la contrainte f’lx/y=kconvx/yfyv est appliquée. L’allongement maximal d’après 
l’équation (3) est établi pour un carré au bord de la section de la pile, c’est à dire avec h = 
b (cf. figure 3). L’espacement entre les armatures longitudinales sur le long côté de la pile 
est sl = 80mm; sur l’autre, l’espacement sera un tiers de celui des deux armatures 
longitudinales tenues dans les coins de l’étrier. 

 

Figure 3: Marge considérée pour la détermination de la limite d’allongement de piles 
avec recouvrement d’armature longitudinale. 
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Calcul 

hcon = 350mm – 28mm = 322mm  
bcon = 350mm – 2·28mm = 294mm 
s = 75mm 
sl1 = (350mm – 2·25mm – 2·6mm -14mm)/3 = 98  
sl2 = 80mm 
  → kcon = 0.70 
f’ll = 0.7· (2·28.3mm2 / (294mm·75mm))·528MPa = 0.95MPa  (2 dbv = 6mm) 
f’lq = 0.7· (28.3mm2 / (322mm·75mm))·528MPa = 0.44MPa (1 dbv = 6mm) 

f’l = (0.44 + 0.95)MPa / 2 = 0.69MPa 

௖݂௖ = 35.2 ቆ−1.254 + 2.254ට1 + ଻.ଽସ∙଴.଺ଽଷହ.ଶ − 2 ∙ ଴.଺ଽଷହ.ଶቇ = 39.8 MPa 

  →cc = cu,St = 0.002 (1 + 5(39.8 / 35.2 – 1)) = 0.0033 
 

La figure 4 montre, sur la base du modèle, du matériau et des hypothèses de calcul 
mentionnées, la relation moment-courbure de la section, ainsi que les courbures 
auxquelles les limites d’allongement calculées sont atteintes. 

 

Figure 4: Relation moment-courbure de la section considérée. Les courbures auxquelles 
les allongements limites pour les piles avec recouvrement cu,St, le béton cu et l’armature 
su  sont atteintes, sont indiquées. 

 

Longueur des rotules plastiques  
La longueur de la rotule plastique est calculée avec l’équation proposée par [4]: 

 (1) 

Aux piles considérées ici, une charge verticale P de 1300kN a été appliquée pendant 
l’essai. Avec le poids de la pile et de la construction, la charge verticale s’élève environ à 
P = 1365kN au total. 

 

0

500

1000

1500

2000

2500

3000

0 0.01 0.02 0.03 0.04 0.05

M
om

en
t [

kN
m

]

Courbure[m-1]

'y
su

cu
cu,St

 . . . .p s
g c

PL 0 2h 0 05L 1 1 5 0 8h
A f

 
     

 



662  |  Seismic Safety of Existing Bridges – Cyclic Inelastic Behaviour of Bridge Piers

September 2014 45 

Calcul ܮ௣ = ሺ0.2 ∙ 1.5 + 0.05 ∙ 4.5ሻm൭1 − 1.5	 ൬ 1.3651.5 ∙ 0.35 ∙ 35.2൰൱ = 0.47m 

       ≤ 0.8 ∙ 1.5m = 1.2m 

 
 

Calcul de la déformée en flexion 
La déformation en flexion est calculée à l’aide de la relation moment-courbure et de la 
longueur de la rotule plastique comme suit : 

 (5) 

Dans les équations, y’ correspond à la courbure à laquelle la plastification apparaît pour 
la première fois. Ce moment est défini lorsque la contrainte dans la zone de traction 
atteint la limite d’élasticité, ou lorsque la déformation du béton atteint c = 0.002 dans la 
zone comprimée de la section. Dans le cas considéré, la limite élastique de l’armature est 
atteinte en premier. La courbure y’ est également représentée à la figure 4. La 
déformation en flexion est déterminée par l’équation (5) jusqu’au point où l’allongement 
limite qui a été calculé avant soit atteinte (cf. figure 5). 

Pour une pile avec recouvrement, il est supposé que lorsque la limite élastique est 
atteinte, la résistance décroit jusqu’à celle définie par l’excentricité maximale de la force 
normale. Ceci est calculé comme suit : 

 (4) 

Calcul 

a = 1.365MN / (0.85·35.2MPa·0.284m) = 0.16m 
V = (1365kN / 4.5m)·((1.5m – 2·0.033m) – 0.16m) / 2 = 193kN  
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Figure 5: Déformation en flexion d’une pile avec (mit Stoss) et sans (ohne Stoss) 
recouvrement au pied 

 

Déformations en cisaillement 
Les déformations dues au cisaillement sont prises en compte dans la modélisation par 
leur rapport à la déformation en flexion. Celui-ci est estimé par une méthode modifiée 
selon [8], dépendant de l’allongement axial au centre de gravité de la section l et des 
taux d’armature longitudinaux et transversaux, l et v: 

   (6) 

La racine quatrième au dénominateur de cette équation correspond à la tangente de 
l’angle de fissure  utilisé dans le calcul. Pour tenir compte des observations, selon 
lesquelles les piles présentant les plus faibles résistances au cisaillement subissent de 
plus grandes déformations, comme proposé dans [28], le facteur de correction  sera 
considéré sur la base de la résistance au cisaillement-traction Vn d’après [10] ainsi que de 
la résistance du champ de compression dans l’âme Vwc d’après [11] : 

   (7) 

Dans le cas d’un taux d’armature longitudinal l > 2.5%, le terme (0.5 + 20l) est fixé à 1.0. 
Le terme (3 – Ls/h) prend uniquement en compte la transition entre les rapports de 
cisaillement de 1.5 à 2.0, soit 1 ≤ (3 – Ls/h) ≤ 1.5. Dans l’exemple de calcul, Ls/h=3, et la 
valeur à introduire est donc 1.0. La part de la charge axiale P n’est considérée que dans 
le cas d’une force de compression, et est nulle sinon. Pour le bras de levier z et la 
hauteur de la zone comprimée xc, les valeurs issues de l’analyse de section 
correspondant au moment maximal sont utilisées ici. Pour la détermination du facteur de 
correction  pour autant que rien ne soit précisé dans l’équation (8), le même angle de 
fissure que dans l’équation (7) est introduit. Dans le cas où le calcul est réalisé à l’aide 
d’Excel par exemple, le facteur de correction peut être déterminé en fonction de la force 
horizontale V, comme cela a été fait dans l’exemple de calcul présenté ici. Dans le calcul 
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suivant, le facteur est par exemple établi pour la valeur maximale Vmax = Mmax/Ls. Le calcul 
du rapport des déformations en cisaillement et en flexion a été conduit avec Excel, et est 
représenté dans la figure 6 en fonction de la déformation axiale. 

 

 

Figure 6: Rapport des déformations en cisaillement et flexion  

 

Calcul 

xc = 0.322mm  
h – xc – c = 1500 – 322 – 25 = 1153mm 
z = 0.87m (d’après l’analyse par section) ௡ܸ,௩ = 	0.0008 ∙ 0.35m ∙ 528MPa ∙ 1.153m ∙ cot 30° = 295kN ௡ܸ,௖ = ሺ0.5 + 20 ∙ 0.0123ሻ0.05√35MPa ∙ 0.8 ∙ 1.5m ∙ 0.35m = 93kN 

௡ܸ,௣ = 1300kN ሺ1.5 − 0.322ሻm2 ∙ 4.5m = 	170kN 

  → Vn = 295 + 93 + 170 = 558kN 
 

tan ߠ = 	 ඩ0.0008 + 20025 ∙ 0.0123 ∙ 0.00080.0123 + 20025 ∙ 0.0123 ∙ 0.0008ర = 0.516	 
  → Vwc = 0.35m·0.87m·0.6 35MPa / (1/0.516+0.516) = 2.6MN 
  →  = 2900kNm / 4.5m (1 / 558kN + 1 / 2600kN) = 1.4 
 

Déformée totale 
La déformation totale est la somme des déformations en flexion et en cisaillement. Les 
déformations en cisaillement sont considérées comme négligeables jusqu’au début de 
l’écoulement de l’armature longitudinale, et seule la flexion est alors considérée. Ainsi, la 
déformée totale au début de l’écoulement ( ) est estimée comme suit : 

   (8) 

Dans le domaine inélastique, soit pour , la déformée est calculée comme suit : 
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   (9) 

 

Les équations (9) et (10) sont évaluées avec les grandeurs déterminées précédemment (Lp, s/fl 
etc.). Les relations force-déformation résultantes sont présentées à la figure 7. Le pli dans la 
relation force-déformation est dû au fait que la déformation en cisaillement, estimée faible, soit 
négligée dans la domaine élastique. 

 

Figure 7: Relation force-déformation pour une pile avec (mit Stoss) et sans recouvrement 
de l’armature longitudinale (ohne Stoss). 
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1 Introduction

1.1 Background of the project

Switzerland is a region with moderate seismicity where the maximum horizontal peak
ground acceleration on rock ground is agh = 1.6m/s2 = 0.16g for a return period of 475
years [15]. With a viscous damping of 5%, this results in elastic peak spectral accelerations
of Se = 2.5agh = 0.4g for rock and Se = 3.5agh = 0.56g for the most unfavorable, alluvial
soils. These values are modified in the design depending on the importance of the building
and the ductility of the structure. Because of the relatively moderate hazard, the seismic
action has long been underestimated and earthquake provisions have found their way into
the codes only in recent years. Back in 1970 [16], the maximum peak ground acceleration
that was only considered when assigned by local authorities for a certain area, was merely
agh = 0.05g. This had to be increased by 40% for buildings in which a large number of
people was expected, similar to SIA 261 [15]. In 1989 some measures for construction de-
tails, such as ensuring a vertical support in the case of bridge bearing failure, were added
to the codes. Furthermore, the peak ground accelerations were raised to the values that
still apply today, even though the resulting elastic design spectral accelerations went up to
only 0.35g.

Hence, structures that were constructed before 1989 were designed for a significantly lower
seismic input than that assumed today and do not meet seismic requirements with regard
to the detailing. According to a technical documentation issued by the Federal roads of-
fice (FEDRO) [17], only 10% of existing Swiss bridges were constructed after 1989, while
half of the bridges were constructed between 1970 and 1989 and the rest before. This
means that only 10% of the then existing 3350 road bridges were constructed according
to modern design codes. The remaining 90% of the bridges, and hence about 3000 ex-
isting bridges, were not designed to withstand seismic loading and need to be assessed.
For this assessment, a two step procedure targeted towards the most widespread type of
girder-bridges was suggested by [17]: In a first step, bridges are checked for typical defi-
ciencies which render the structure prone to damage under seismic loading. Bridges that
are identified as potentially vulnerable undergo an in-depth assessment in the second step.
Besides deciding on whether measures such as providing lateral supports for the super-
structure to prevent its unseating are necessary, the performance of a structure itself must
be assessed. If this assessment is necessary, it may be done according to either a force-
based or a displacement-based approach [17]. In recent years, there is a strong tendency
towards displacement-based approaches, as these often prove to be the more economical,
especially for the assessment of existing structures. While the force-based approach may
almost inevitably lead to the conclusion that costly retrofitting measures are necessary to
increase the resistance of a structure, the displacement-based approach may lead to the
conclusion that the deformation capacity of a structure is actually sufficient. This might be
the case particularly in countries like Switzerland, where the displacement demands are
only moderate.

The research project which provides the framework for the study presented here stems
out of the need to establish a displacement-based approach for the assessment of existing
Swiss bridges. In the first part of this project a survey of the Swiss bridge stock was
conducted to identify critical bridge layouts [1]. To this end, the database of the FEDRO,
containing all Swiss bridge structures, was evaluated and combined with the results of
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the first step assessment by [17], which were then available for three cantons. Out of
the bridges for which the latter results were available, almost 40% were multi-span girder-
bridges followed by a large percentage of frame bridges which were deemed uncritical [17].
Hence, it was decided to focus the research on multi-span girder-bridges [1]. Within this
bridge type, it was found that primarily relatively short and squat piers may prove critical,
because they have a low displacement capacity and are prone to shear failure [1, 18, 19].

Based on a sample set of three different existing bridges that feature this type of piers, a test
series was initiated to gain experimental evidence on the cyclic behavior of these piers [1].
The test units resembled the existing wall-type bridge piers with rectangular cross section
that were considered to be the most critical type of bridge piers and featured the following,
commonly found detailing deficiencies: i) The equally distributed longitudinal reinforcement
was not confined near the boundaries, which means that neither was the concrete confined
nor the reinforcing bars themselves restrained against buckling; ii) the transverse reinforce-
ment ratio was very low and the stirrups did not have hooks that were anchored in the
concrete core; iii) the longitudinal reinforcement of one of the test units had a lap splice at
the base of the pier in the potential plastic hinge zone. Within the second part of this project,
the test campaign was continued to enlarge the available database [3]. The results from this
test series serve as experimental data for the evaluation and validation of models for the
displacement capacity of these piers, which are required for a reliable displacement-based
assessment.

1.2 Problem statement

As outlined in the previous section, a large number of existing bridges has been constructed
before earthquake provisions were included in the design codes. A previously identified
potentially critical structural component of these bridges are relatively short wall-type piers
with detailing deficiencies [1]. Their design and construction does usually not comply with
modern capacity design requirements. While their force-capacity may thus be found to be
insufficient, their displacement-capacity is largely unknown. Existing models to evaluate the
displacement-capacity of structural members have often been developed for columns and
validated with the corresponding data. Using these models to predict the displacement-
capacity of the mentioned wall-type piers is hence linked to considerable uncertainty, as
little suitable experimental data exists to validate the applicability of these models to wall-
type piers.

However, to perform a displacement-based assessment of existing bridges, reliable models
to predict the force-deformation relationships are necessary. Hence, first, additional experi-
mental data is required to complement the existing data and, second, existing models need
to be evaluated and new models need to be developed that allow estimating the force-
deformation relationship. An experimental test campaign containing seven large scale pier
tests of the investigated type has already been carried out in the framework of the research
project [1, 3]. Based on the results of these tests, models that account for the typical detail-
ing deficiencies need to be developed.
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1.3 Objectives of this study

The objective of this study is to develop easily applicable engineering type models which
can be used for the displacement-based assessment of existing wall-type bridge piers.
They need to take into account common detailing deficiencies such as low transverse rein-
forcement ratios and a lack of confining reinforcement. In light of the large bridge stock that
needs to be assessed, the models need to be fairly easy to apply but must yield sufficiently
reliable results. Therefore, two types of models are evaluated: the plastic-hinge modeling
approach and an approach based on the kinematics of shear critical piers.

The first approach is chosen because it is easily applicable and is known to yield good
results in predicting the behavior of flexure dominated members. In this study, the applica-
bility of this modeling approach to shear critical members is evaluated and modifications of
the approach to better capture the response are examined and developed. Due to the men-
tioned deficiencies and the geometry of the piers, the focus within this modeling approach
lies on two aspects: Incorporating the shear deformations, which constitute a significant
part of the total deformation, into the modeling approach as well as accounting for the
influence of lap-splices in the plastic hinge region on the behavior of the pier.

The second approach is chosen because it represents a mechanical modeling approach
that is capable of predicting the force and displacement capacity of a pier. As it is a newly
developed approach, it is validated against a database of wall-type piers in this study. Fur-
thermore, the influence of several pier characteristics on the displacement-capacity is stud-
ied with this approach.

1.4 Outline of the report

Chapter 2 provides a review of existing plastic hinge modeling approaches and all neces-
sary quantities. It starts with introducing the basic mechanical concept behind the modeling
in Section 2.1. Section 2.2 then introduces the key quantity that is needed for this type of
modeling, i.e. the plastic hinge length. Several suggestions that are either developed for
walls or modified for the application to wall-type structures are introduced and discussed.
Section 2.3 deals with the rotation due to anchorage slip, which is either taken into account
by adding a strain penetration length to the plastic hinge length or by adding an additional
rotation component to the deformation. The then following Section 2.4, summarizes strain
and curvature limits for the plastic hinge region from the literature that are used for estimat-
ing the displacement capacity of the piers. Section 2.5 treats the prediction of the flexural
response. Section 2.6 introduces some approaches to incorporate the shear deformations
into the plastic hinge modeling approach. Section 2.7 treats the behavior of lap splices un-
der seismic loading and gives example of models to predict the strength and failure strain
limits of lap splices.

Chapter 3 contains the application of the previously introduced plastic hinge models and
a validation and discussion of results based on the test data provided in [1, 3]. First, the
plastic hinge length predictions are compared to experimentally derived measures for the
plastic hinge length. Differences in determining the plastic hinge length are discussed and
a suitable approach for the investigated piers is identified based on the experimetal data.
Section 3.4 compares anchorage slip predictions with the experimental data in the elastic
and inelastic range. In Section 3.5 the computation of the moment curvature response is
discussed and in Section 3.6 the flexural response of the piers is determined based on the
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results of the preceding sections of this chapter and discussed based on the comparison
with the experimental data. Section 3.7 contains an in-depth discussion of shear deforma-
tions. Besides the models introduced in Chapter 2, the experimental data is evaluated in
detail and different approaches to model shear deformations are evaluated. Section 3.8
discusses the incorporation of the lap splice behavior into the modeling and identifies pos-
sible limit states for the onset of splice degradation. Finally, in Section 3.9 the determination
of the complete force-deformation relationship, taking into account the findings of the pre-
ceding sections, is discussed. The chapter closes with conclusions on the plastic hinge
modeling approach for the modeling of piers with detailing deficiencies in Section 3.10.

Chapter 4 provides both review and evaluation of existing models to predict the shear
strength degradation. Section 4.2 introduces various kinds of models which were primarily
developed to capture the shear strength degradation of columns. First, shear capacity mod-
els which are based on truss or strut-and-tie approaches and include a partially empirically
determined shear strength degradation depending on ductility are introduced. Second, em-
pirically determined drift capacity models, which aim at directly predicting the deformation
capacity of a member, are briefly discussed. In the following sections, a truss model with
plastic limits for the compression zone, a shear-flexure interaction model and an approach
to predict the shear degradation based on the degradation of the load transfer mechanisms
across the shear crack are presented. In Section 4.3, the performance of these models
when applied to wall-type piers is evaluated and discussed.

Chapter 5 contains the validation of a three parameter kinematic approach to predict the
load-displacement response and the degradation of shear critical piers, which has been
developed by [13]. The chapter begins with an explanation of the mechanical and kine-
matic assumptions underlying the approach. Section 5.3 then presents the experimental
database used for the validation of the approach in Section 5.4. Section 5.5 discusses
the influence of some main characteristics, namely the transverse reinforcement ratio, the
aspect ratio, the axial load ratio and the longitudinal reinforcement ratio, on the force-
deformation response, especially with regards to their influence on the drift capacity. Sec-
tion 5.6 provides an in-depth discussion of one of the main parameters of this model: the
so-called critical loading zone which represents the area damaged in compression and is a
modeling quantity comparable to the plastic hinge length. Finally, Section 5.7 contains the
conclusions of this chapter.

The final Chapter 6 provides a summary of the report as well as the key conclusions drawn
from this study. Furthermore, topics for which further research is deemed necessary are
outlined in the last section.
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2 Review of plastic hinge models

2.1 Introduction

Plastic hinge modeling builds on the idea that the global force-deformation response of a
structural component can be computed from the local moment-curvature (M-φ) relationship
determined for the section at which the maximum moment occurs. Furthermore, inelastic
curvatures are assumed to concentrate in a limited region along which they are linearly
distributed. In plastic hinge models, this region is substituted with an equivalent plastic
hinge with constant curvature. Outside the plastic hinge, deformations are taken to be
elastic. Figure 2.1 shows the assumptions and simplifications that were just described.

With the procedure briefly outlined above, only flexural deformations can be estimated,
which is not sufficient especially for the wall type structures investigated herein. Shear
deformations may constitute a significant part of the total deformations of these members.
Therefore, models have been developed which relate shear to flexural deformations. They
can be used in conjunction with the plastic hinge models to account for shear deformations.
The total deformation is then obtained as the sum of flexural and shear deformations.

The reason for choosing such a lumped plasticity method over direct integration of the
curvature profile of a member obtained from section analysis is that, according to [7], the
latter was not suitable to obtain deformation estimates because neither shear deformations
nor tension shift and strain penetration effects can be accounted for. Furthermore, the de-
flection could only be determined up to maximum load and not beyond peak, when the
tangent stiffness might be negative. The assumption of a plastic hinge length Lp with con-
stant curvature captures the tension shift as well as strain penetration effects and partially
compensates for shear deformations, according to [7].

In the following sections, procedures outlined by several researchers to determine all nec-
essary quantities for plastic hinge analysis, i.e. the plastic hinge length, the flexural re-

φ′y

Ls

Linear least-square
error fit

φspφp

Real profile

φb

φ′y

Ls

M

My
φ′y

Lp

φp

Figure 2.1: Linear approximations of the true curvature profile (left) and assumptions for the plastic hinge
model (right). In the displayed case, the strain penetration length Lsp is assumed to be part of
the plastic hinge length Lp.
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sponse and the shear response, are briefly introduced. Section 2.2 presents several plastic
hinge length equations that were either directly developed for walls or modified to be ap-
plicable to wall-type structures. Section 2.2.1 introduces some of the parameters which
are typically regarded to influence the length of the plastic hinge of wall-type structures.
Section 2.3 deals with anchorage slip, which is either accounted for in the modeling by
increasing the plastic hinge length or by introducing a fixed end rotation component. In
this section, some approaches to directly determine the slip are introduced and the results
of these are compared with those obtained with an increased plastic hinge length. Strain
and curvature limits which are used to predict the deformation capacity are introduced in
Section 2.4. Section 2.5 then presents approaches to determine the flexural response of a
member by using the quantities introduced in the preceding sections. Section 2.6 presents
models with which shear deformations can be accounted for within plastic hinge model-
ing. Finally, stress and strain limits which can be employed to account for the influence of
spliced reinforcement in the plastic hinge region are discussed in Section 2.7. In Chapter
3, these modeling approaches are applied to seven test units tested in the framework of
this project [1, 3] and the results are compared to their experimental data.

2.2 Plastic hinge length

2.2.1 Parameters influencing the plastic hinge length

Most of the plastic hinge lengths proposed by researchers have originally been developed
for and calibrated against beams or columns, but some explicit suggestions or adaptions
have been made for wall type structures, such as the suggestion in [7] to increase the
tension shift component for walls. Besides the tension shift, the effects primarily accounted
for are:

• Spread of plasticity due to moment gradient Mu/My

• Spread of plasticity due to strain hardening fu/fy

• Pullout of longitudinal reinforcement of the anchorage (or strain penetration effect)

• Aspect ratio

• Axial load

• Type of loading: monotonic or cyclic

It seems that researchers do often not explicitly distinguish between the spread of plasticity
due to Mu/My and fu/fy. Though both effects are certainly also related, the first one can
also occur if the steel does not exhibit any strain hardening, because moment capacity will
increase from first yield to the ultimate inelastic capacity. For that reason, the two param-
eters are mentioned separately here. In the following, a brief summary of different plastic
hinge length equations for wall-type structures is given, for more exhaustive overviews on
plastic hinge lengths in general the reader is referred elsewhere, e.g. [20].

2.2.2 Plastic hinge length according to Priestley et al.

Over the years, several modifications of the plastic hinge length have been suggested by
Priestley, Paulay, Park and their co-workers. However, here only the proposition from the
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latest book [7] is included, since it is expected to reflect the latest development of the
equation. The plastic hinge length of beams and columns is:

Lp = kLs + Lsp ≥ 2Lsp (2.1)

where Ls is the length from the critical section to the point of contraflexure in the member,
k a factor accounting for strain hardening according to Equation (2.4) and Lsp the strain
penetration length according to Equation (2.3). For a cantilever, Ls is equal to the column
height H. A lower limit of Lp = 2Lsp for the plastic hinge length is suggested, to account for
the reinforcement slip out of the structural member as well as the footing.

As tension shift has a larger effect on wall structures than on beams, an additional term
of 0.2h is recommended for comparison with experimental data. For design, this value is
conservatively reduced to 0.1h. Hence, the total plastic hinge length for a wall-type structure
is:

Lp = kLs + 0.2h+ Lsp (2.2)

The strain penetration length is calculated according to the following equation:

Lsp = 0.022fy · dbl SI units (2.3)

where fy is the yield strength of longitudinal reinforcement in MPa and dbl is the bar diam-
eter of the longitudinal reinforcement in mm. If US customary units are used, the factor
0.022 changes to 0.15.

It is stated that the strain penetration length is related to anchorage slip, which here refers
to the pullout of the reinforcement from the foundation, as well as the spread of concrete
compressive strains into the foundation. The derivation of the factor 0.022 is not included
in [7], but in [21], 6dbl were suggested for grade 40 reinforcement and 9dbl for grade 60
reinforcement. Those values were determined from large scale tests and result in the
recommended factor 0.022 if divided by the respective steel strength. Including a constant
strain penetration length implicitly implies that the development length of the anchorage is
constant and increasing slip is related to increasing steel strain only.

To also account for the spread of plasticity due to strain hardening of the reinforcement, the
following factor k is introduced:

k = 0.2

(
fu
fy

− 1

)
≤ 0.08 (2.4)

Note that here the spread due to strain hardening is directly addressed via the steel prop-
erties and not via any moment relation. An explanation on the derivation of the equation
and hence the derivation of the factor 0.2 is not presented in [7]. The plastic hinge length
expression introduced in this section is mainly targeted towards determining the ultimate
displacement of a structure. However, as the authors also introduced a “refined” approach
to predict the entire load-displacement response, which is “suitable for prediction of experi-
mental response”, and provide no restrictions for the use of Lp according to Equation (2.2),
it can be assumed that Lp may be used for prediction of the entire response as well.
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2.2.3 Plastic hinge length according to Fardis et al.

Based on a large test database a plastic hinge length accounting for the loading type
(monotonic or cyclic) was presented by [22]. To obtain an estimate for Lp, with which the
deformation capacity could be determined, the authors evaluated 875 tests for which an
ultimate drift θu, defined as the point of at least 20% drop of the lateral load, was reported.
From the test data it was concluded that Lp should, in addition to the loading type, be a
function of the shear span as well as the reinforcement yield strength and bar diameter.
The equations proposed for Lp yield the best fit values for the experimentally determined
θu. The plastic hinge length was derived based on analytical estimates for the curvatures
φu and φ′

y. For the derivation of the curvature expressions an elastic-perfectly plastic steel
model and a parabolic-linear concrete model were used.

The plastic hinge length Lp was assumed to be a linear function of Ls and dblfy. With this
assumption, the experimental data for cyclic loading was evaluated and the equation for Lp

that matched the data best was found to be:

Lp,cyc = 0.12Ls + 0.014kpdblfy (2.5)

where kp is a factor accounting for whether bar pullout is possible (kp = 1) or not (kp = 0).
The former applies if a plastic hinge develops right above the foundation of a member,
which causes pullout of the reinforcement out of the foundation, whereas the latter applies
if the plastic hinge develops at midlength of a beam, for instance. For monotonic loading,
the plastic hinge length was found to be 1.5 times longer than for cyclic loading: Lp,mon =
1.5Lp,cyc.

According to [4] this equation did not yield good results if only the slender (i.e. Ls/h > 2.5)
wall-type structures of the above mentioned database were considered: For those walls,
the ratio of predicted to observed plastic hinge length varied between 0.25 and 5. However,
in [23] this equation is still included as recommended plastic hinge length for bridge piers,
this time with the factors 0.1 and 0.015.

In [6] two different equations are presented, one for cyclic loading and good seismic de-
tailing (Equation (2.6b)) and one for monotonic loading regardless of detailing (Equation
(2.6a)). The reinforcement bar slippage is no longer included in the plastic hinge length,
but as additional rotation component. Models also adopted in Annex A.3.2.2 (8) of [24]
were employed for the concrete strength together with a maximum strain relation which
takes the confined depth into account. Eventually, the plastic hinge length was again taken
to be the length for which the best datafit in conjunction with Equation (2.36), which yields
an ultimate drift estimate and is thus included in Section 2.5, was achieved:

Lp,mon = h

(
1.1 + 0.04min

(
9,

Ls

h

))
(2.6a)

Lp,cyc = 0.2h

(
1 +

1

3
min

(
9,

Ls

h

))
(2.6b)

Note that no distinction was made between beams and walls, since the results apparently
fit both data sets. The equation does differentiate, however, between monotonic and cyclic
loading. One should keep in mind that this plastic hinge length has been developed to
match the ultimate rotation best and not the entire flexural response.
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2.2.4 Plastic hinge length in Eurocode

In Annex A of Eurocode 8 (EC8) Part 3 [24] for the assessment and retrofitting of buildings
two slightly different plastic hinge lengths are recommended for use. The choice between
the two lengths depends on the choice of the models with which ultimate steel and concrete
strains are computed. If the more complex strain limits according to A.3.2.2 (8) are used,
the plastic hinge length is recommended to be:

Lp =
Ls

30
+ 0.2h+ 0.11

dblfy√
fc

(2.7)

For the steel, the proposed limit strain is εs,u = 0.06 for ductile steel of class C. For concrete,
strains have to be evaluated using a confined concrete model similar to Equations (3.3) and
(2.26). The confined concrete strength and ultimate strain are then:

fcc = fc

(
1 + 3.7

(
kcon�vfyv

fc

)0.86
)

(2.8a)

εcu = 0.004 + 0.5
kcon�vfyv

fcc
(2.8b)

where kcon is obtained from Equation (2.29). The strain penetration component of Lp

corresponds to the component suggested in Equation (2.5) if the concrete strength is
fc = 62MPa and to the one proposed in Equation (2.3) if fc = 25MPa. With this plas-
tic hinge length and the curvatures corresponding to the defined limit strains, the ultimate
deflection and not the entire response of a member can be determined.

2.2.5 Numerically determined plastic hinge lengths

A study in which a plastic hinge length was developed explicitly for walls is presented in
[4]. Based on experiments conducted by one of the authors, a VecTor2 [25] model was set
up and used to conduct a parametric study with the objective to investigate the influence
of shear on Lp. The latter was taken as half the length over which plasticity spreads. The
spread of plasticity was obtained from the distribution of inelastic steel strains predicted in
the analysis. Furthermore, it was investigated whether the comparatively low normal force
ratios of walls and their geometry and reinforcement distribution, which is different from
columns, influence Lp. All walls in the study were modeled as cantilever with the same
concrete and steel constitutive relationships. The steel was modeled with a yield plateau
and linear strain hardening setting in at 10�. The ratio of ultimate to yield stress was
fu/fy = 625/400 = 1.625. It was found that cyclic loading did not have much influence on
the distribution of vertical strains compared to monotonic loading, but resulted in a slight
increase in horizontal and shear strains. Furthermore, the authors observed that the spread
of plasticity was not directly proportional to the wall length.

Shear was found to have a significant influence on the spread of plasticity, especially in
squat walls after the onset of diagonal cracking. Contrarily to what [26] observed for
columns, an axial load was found to reduce the plastic hinge length of walls. This was
explained with the observation that the ratio Mu/My decreases when the normal force in-
creases.
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Even though shear was found to have a significant influence, the authors eventually con-
cluded that if shear span and wall length are included in the formulation for the plastic
hinge length, the shear stress does not need to be explicitly accounted for. The proposed
equation is hence merely a function of wall length h, shear span Ls and normal force P.
The plastic hinge length was taken as half the length over which plasticity spreads, Lpr,
since the authors observed that the inelastic curvature varies linearly over this length. That
means, unlike for instance [6], the authors did not adjust the plastic hinge length to fit the
overall displacement best, but used the actual plasticity spread from the numerical model.
Comments on the agreement of the top displacement, which is predicted with this plastic
hinge length, with experimental or numerical results are not provided in [4]. The authors in-
terpret the resulting Lp as a lower bound estimate for the plastic hinge length of an isolated
cantilever wall:

Lp = (0.2h+ 0.05Ls)

(
1− 1.5

P

Agfc

)
≤ 0.8h (2.9)

Another numerical study to investigate the plastic hinge length of structural walls has been
conducted by [27] using the software ANSYS. Structural walls that were several stories high
were analyzed with a hybrid FE model: the two bottom stories were modeled with solid
continuum elements and the upper stories with Timoshenko-beam elements. The wall was
modeled with horizontal flanges at the height of the floors in the two bottom stories to ac-
count for the influence of floor-slabs on the shear flow in the wall. Material properties were
again kept constant throughout the study with a concrete strength of fc = 25MPa and a
steel yield strength of fy = 420MPa. The steel was modeled bilinear with a hardening mod-
ulus of Esh = 1500MPa which would result in a ratio fu/fy = 1.35 if a strain of εsu = 0.10 is
assumed. The objective of this numerical study was to investigate the influence of the wall
length h, shear span Ls, axial load ratio n, longitudinal reinforcement ratio of the boundary
element �l,b and transverse reinforcement ratio �v on the spread of plasticity and the length
of the plastic hinge. The latter was not assumed to correspond to half the length over which
plasticity spreads Lpr, but was calculated from the numerically determined curvatures and
top displacement by rearranging Equation (2.34). No distinction between top displacements
due to flexure and shear was made. Finally, the plastic hinge length was derived by means
of a regression analysis taking into account the varied parameters:

Lp = 0.27h

(
1− P

Agfc

)(
1− fyv�v

fc

)(
Ls

h

)0.45

(2.10)

In the analysis, the wall and the foundation were modeled with smeared reinforcement. The
latter was modeled to capture a potential strain penetration effect. However, no detailed in-
formation is provided on how this is done with the smeared reinforcement approach and on
whether or how possible influences such as bond strength and bar diameters were consid-
ered. As yielding did not proceed into the foundation, strain penetration was concluded to
be negligible and hence not included in Lp. Furthermore it was observed that the plastic
hinge length corresponded to about 43% of Lpr rather than 50%, as usually assumed. The
provided curvature profiles do not indicate a perfectly linear shape and the value of 43%
can hence stem from a slight concentration of curvatures towards the base.

60 September 2014



662 | Seismic Safety of Existing Bridges - Cyclic Inelastic Behaviour of Bridge Piers

2.2.6 Experimentally determined plastic hinge length

Techniques to evaluate the plastic hinge length using experimental data are presented in
[20] and [28]. The plastic flexural deformations Δp,fl, which are needed to backcalculate
Lp, can be computed from the total deformations Δ if the flexural deformations at first yield
Δ′

y,fl as well as the shear deformations Δsh are known:

Δp,fl = Δ−Δsh −Δ′
y,fl

M

M ′
y

(2.11)

All the deformation values are experimentally determined. The flexural deformation at first
yield is the experimentally determined flexural deformation corresponding to the analyti-
cally determined first yield force (e.g. the first yield force according to moment-curvature
analysis). With Δp,fl, the plastic hinge length Lp can be computed as:

φpLsLp = Δp,fl → Lp =
Δp,fl

φpLs
=

L′
p

2
+ Lsp (2.12)

where L′
p is the length over which plasticity spreads and φp the plastic flexural curvature at

the base of the wall:

φp = φb − φ′
y

M

M ′
y

(2.13)

To obtain the base curvature φb a least squares approximation of the curvature profile, using
at least three inelastic curvature values, is recommended. For a cantilever pier, developing
the inelastic curvatures right above the base, this means that at least the first three mea-
surements taken above the basecrack should be used. If the inelastic curvatures spread
further up, more measurements may of course be used. The intersection between the linear
least-squares approximation of the inelastic curvatures and the horizontal axis is assumed
to be the base curvature. The difference between this value and the one measured at the
base is usually ascribed to strain penetration effects. Figure 2.1 visualizes the assumptions
on which the calculation of the plastic hinge length is based. One of the assumptions is that
inelastic curvatures follow an approximately linear trend. Often, this is not exactly the case
for experimentally derived curvature profiles. Compressive strain concentrations due to a
fan-like crack pattern and variations in crack locations render them slightly irregular [20].
Plastic hinge lengths determined according to Equation (2.12) contain a strain penetration
component Lsp, because the latter is also included in the top displacement used for the
computation of Lp. Based on the assumption that Lsp is independent of the curvature and
that the rotation due to strain penetration can be calculated by multiplying Lsp with the base
curvature φb, the strain penetration length can be calculated as follows:

Lsp = Lb

(
φmeasured

φb
− 1

)
(2.14)

where Lb is the actual base length of the measurement devices covering the base crack
and φmeasured the curvature determined with the readings of those devices in conjunction
with Lb.
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2.2.7 Summary of plastic hinge lengths

Table 2.1 summarizes the different plastic hinge length equations which were introduced
in Sections 2.2.2 to 2.2.5. It also lists the components that are included in the equations,
to give an overview over which characteristics that influence the plastic hinge length were
taken into account by different researchers. Differences in the equations do not only ex-
ist with regard to the effects that are assumed to influence the net plastic hinge length
along the member L′

p, but also with regard to whether strain penetration is included as ex-
tra component Lsp in the plastic hinge length. Furthermore, the assumed location of the
center of rotation – at the center or at the bottom of the hinge – influences the length. Or
in other words, if the same plastic hinge length with different centers of rotation is used,
different top displacements are predicted. Hence, all plastic hinge lengths derived from top
displacements are influenced by the assumed center of rotation.

Table 2.1: Summary of plastic hinge length equations.

Includes influence of

Equation for plastic hinge length Ls h fu
fy

P
Agfc

SP LT CR

Eq. (2.2): 0.2
(

fu
fy

− 1
)
Ls + 0.2h+ Lsp ✗ ✗ ✗ ✗ b

Eq. (2.6b): 0.2h(1 + 1
3 min

(
9, Ls

h

)
) ✗ ✗ ✗ m

Eq. (2.7): Ls

30 + 0.2h+ 0.11
dblfy√

fc
✗ ✗ ✗ m

Eq. (2.9): (0.2h+ 0.05Ls)
(
1− 1.5 P

Agfc

)
✗ ✗ ✗ -

Eq. (2.10): 0.27h(1− P
Agfc

)
(
1− fyh�v

fc

) (
Ls

h

)0.45
✗ ✗ ✗ m

Table 2.1 summarizes also which influences are considered in the plastic hinge length
formulation. If strain penetration is included in the hinge length, column “SP” is checked and
if the loading type, i.e. cyclic or monotonic loading, is considered, column “LT” is checked.
The last column indicates, where the center of rotation is assumed in the equation for the
flexural response that is recommended in combination with the respective plastic hinge
length. Two locations are possible, either at the base (b) of the plastic hinge and hence
the base of the pier or at midheight (m) of the plastic hinge. If no recommendation for
the location of the center of rotation is made, the last column is dashed. Another short
summary with comparison to the experimental data is given in Table 3.2.

2.3 Rotation due to anchorage slip

2.3.1 Anchorage slip

As indicated previously, the deformation due to anchorage slip or strain penetration can be
included by increasing the plastic hinge length, see for instance Equations (2.1) and (2.7).
Another possibility is to include the component when the flexural response is computed,
see for instance Section 2.5.1. For the latter, different methods exist to calculate the slip
of the anchored bars with which the rotation is determined. To compare the results of the
methods and the influence of some parameters, three common approaches to calculate the
slip are briefly examined: 1) Integration of bond-slip relations along the development length

62 September 2014



662 | Seismic Safety of Existing Bridges - Cyclic Inelastic Behaviour of Bridge Piers

of a bar, 2) use of simplified, constant bond stress distributions and integration of the rein-
forcement strains along the development length and 3) use of stress-slip relations obtained
from pull-out tests with long embedment length. The first method requires some computa-
tional effort, because it is an iterative procedure requiring a rather fine mesh. Furthermore,
bond-slip relations are generally determined from tests on bars whose strains are low, but
for determining the total slip, the bond conditions of reinforcement bars that are yielding,
need to be known [29]. To overcome this deficit and include the effect of inelastic strains
in the bond slip relations, modification factors have been proposed by several researchers.
The second method requires less computational effort than the first by assuming a stepped
bond stress distribution with constant values for both elastic and inelastic steel strains.
With this assumption, the development length ld can easily be calculated. The slip is then
calculated by integration of the linear strain profile along ld. This approach is appealing
because of its simplicity. Furthermore, since the results have sometimes been calibrated
against tests with long embedment length satisfactory agreement is expected despite the
simplified bond stress distribution. Method 3) uses slip-strain relations which have been
determined from pullout tests on specimen with long embedment length, which closely re-
flect the real conditions in a pier footing. Due to the mentioned computational efforts and
shortcomings of approach 1), only models following approaches 2) and 3) are included in
this section.

Researchers have proposed different bond strength values τb for approach 2), which are
typically related to the concrete strength. Cyclic loading effects are generally not considered
which means this approach serves to calculate the envelope of the expected slip under
cyclic loading. For steel strains below yield, bond stresses of e.g. τb1 =

√
fc [30, 31] or

τb1 = 0.6f
2/3
c [32] have been proposed and for inelastic strains bond stresses of τb2 = 0.5τb1

[30, 32]. These bond stresses are then used to calculate the development length. The
development length ld, which corresponds to the elastic range of the reinforcement bar, and
l′d, which corresponds to the length along which yield strain is exceeded, can be derived
from:

fsAsb = τbπdblld (2.15a)

→ ld =
fydbl
4τb1

(2.15b)

→ l′d =
(fs − fy)dbl

4τb2
(2.15c)

where dbl and Asb are the diameter and the cross section of a reinforcement bar, respec-
tively, fs is the considered steel stress and fy the yield strength of the steel. With the
development length, the slip δs can be calculated:

δs =
εsld
2

for εs ≤ εy (2.16a)

δs =
εyld
2

+
(εs + εy)l

′
d

2
for εs > εy (2.16b)

In [29] pullout tests on deformed bars with an anchorage length long enough to prevent
end slip as well as varying concrete strength and bar diameter have been reported. Bar
diameters were not smaller than 19.5 mm and the rib orientation was almost perpendicular
to the bar axis. An unbonded region was provided at the loaded end and the bars were
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pulled against the casting direction. The aim of the tests was to develop a bar strain-slip
relationship which can be used for seismic analysis in both the elastic and inelastic range.
Relations developed from tests with long embedment length seem appealing to determine
the anchorage slip, because the slip and corresponding steel strain conditions reflect the
real conditions of an anchored reinforcement bar. It was found that the non-dimensional
slip δs,n

δs,n =
δs
dbl

(
fc
20

)2/3

(2.17)

could be expressed uniquely as a function of the steel strain εs according to the following
equations:

δs,n = εs(2 + 3500εs) for εs ≤ εy (2.18a)

δs,n = δs,n,y + 0.047 (fu − fy) (εs − εsh) for εs > εy (2.18b)

These strain-slip relations are presented as envelope for cyclic loading and are therefore
well suited for monotonic analysis of piers subjected to cyclic loading.

Based on the tests of [29], amongst others, monotonic and cyclic stress-slip relationships
have been proposed in [33]. For the slip at yield δs,y, the following equation is presented for
monotonic loading:

δs,y = 2.54

(
dblfy

8437
√
fc

(2α+ 1)

)1/α

+ 0.34 (2.19)

where α is a parameter stemming from the assumed bond-slip relation which is here α =
0.4. Two different models have been proposed for the stress-slip relation between δs,y and
the ultimate slip δs,u: a cyclic and a monotonic one. The cyclic model partially depends
on the loading history and is thus not suitable for monotonic analysis. The monotonic
relationship is as follows:

fs =

δs
μ−δs

(fu − fy)[(
1

μm

)Re

+
(

δs
μ−δs

)Re
]1/Re

+ fy (2.20a)

δs =
δs − δs,y

δs,y
(2.20b)

μ =
δs,u − δs,y

δs,y
(2.20c)

with Re = 1.01 to create a gradient close to zero in the vicinity of the ultimate bar strength.
That means the stress-slip relationship is not bilinear but curved after the yield stress has
been exceeded and asymptotically approaching the ultimate stress value. For some quan-
tities, namely transition factor m and the ultimate slip δs,u, a range of possible values was
proposed by [33]. In the following computations, intermediate values were chosen to eval-
uate Equation (2.20). Thus, the stiffness transition factor m was assumed to be m = 0.4
(recommended 0.3 − 0.5) and the ultimate slip δs,u = 35δs,y (recommended 30 − 40δs,y).
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Hence, in contrast to slip at yield δs,y according to Equation (2.19), which has been ob-
tained by linear regression analysis of experimental data, only a range of possible ultimate
slip values δs,u is proposed, due to a lack of sufficient test data. Recommendations on how
to choose δs,u and m are not provided which renders evaluation of the applicability of the
model rather difficult.

As mentioned previously, there is no direct calculation of slip values or the rotation due to
slip if the strain penetration effect is included in the plastic hinge length. According to [7] the
strain penetration length is assumed to capture not only the effect of the pullout of steel in
tension, but also the spread of the concrete compressive strains into the footing. However,
to compare the results obtained with the different approaches, slip values are derived from
the rotation θsp according to Equation (2.25) by means of the following equation:

δs = θsp(d− xc) (2.21)

where d is the distance of the outer reinforcement bar to the opposite edge of the section
and xc the compression zone depth which is determined from moment-curvature analysis
corresponding to θsp.

In Figure 2.2 the slip values predicted with the equations presented in this section are
plotted against the maximum strain in the reinforcement bar. A bilinear stress-strain rela-
tionship with a strain hardening ratio of fu/fy = 1.17 and bar diameter dbl = 14mm has
been used for the steel. Differences in the estimated slip are significant, especially after
the onset of yielding. When the slip is predicted according to Equation (2.21) [7] the steel
properties are, except for the yielding stress, not explicitly taken into account. Hence, the
slip is predicted to increase in proportion to the curvature regardless of the strain hardening
characteristics. Even for an elastic-perfectly plastic steel the slip is predicted to increase
proportionally to the curvature, which does not appear physical. All other predictions are
either based on integration of steel strains along the development length [32, 30, 31] or
steel strain-slip relationships at the loaded end of the bar [29, 33] and exhibit significant
differences between pre-yield and post-yield range. Only two values are contained in the
graph displaying the estimated slip values according to [6], one for yielding and one for
the ultimate slip, which were determined based on the strain limits proposed by the same
authors, provided in Section 2.4. All the models mentioned in this paragraph have been
developed to capture the envelope of the cyclic response, except for the one by [32], who
does not explicitly mention this loading case.

2.3.2 Rotation due to anchorage slip

The rotation due to anchorage slip θsp can be calculated from the slip and the depth of the
cross section under tension d− xc, following the procedure also used by e.g. [30]. The dis-
tance between the outer reinforcement bars and the outer compression fiber is used as ef-
fective section depth d. The compression zone depth xc is obtained from moment-curvature
analysis which also yields the reinforcement strains necessary for the slip calculation. With
these values the rotation can be calculated:

θsp =
δs

d− xc
(2.22)

If the strain penetration effect is included in the choice of the plastic hinge length Lp, the
flexural top displacement Δf,top of a member with shear-span length Ls in the inelastic
range follows as [7]:
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Figure 2.2: Slip predictions according to equations presented in this section against reinforcement strain for
reinforcement bars with dbl = 14mm and fu/fy = 1.17.

Δf,top = φ′
y

M

My

(Ls + Lsp)
2

3
+

(
φ− φ′

y

M

My

)
(L′

p + Lsp)Ls (2.23)

where φ′
y is the first yield curvature, M the current moment, My the first yield moment and

L′
p the part of the plastic hinge length along the member. Within plastic hinge modeling,

it is commonly assumed that the inelastic curvature profile is linear and L′
p corresponds

to half the length over which plasticity spreads. If only the top displacement due to strain
penetration is of interest, L′

p is not considered in the second part of the equation. In the
first term of the equation, the separation of the components is not as simple because of the
quadratic relation. The rotation corresponding to a certain top displacement is obtained by
dividing Δf,top by the shear-span length Ls. To remove the dependency of the rotation due
to strain penetration on Ls, the following assumption is made:

(Ls + Lsp)
2

Ls
= Ls + 2Lsp +

L2
sp

Ls︸︷︷︸
≈0

≈ Ls + 2Lsp (2.24)

Equation (2.23) is then divided by Ls, the components due to Ls and L′
p are neglected

and the simplifying assumption according to Equation (2.24) is introduced. This yields the
rotation due to strain penetration θsp, which has already been used in Equation (2.21):

θsp = φ
2

3
Lsp for φ ≤ φ′

y (2.25a)

θsp = φLsp − 1

3
φ′
y

M

My
Lsp for φ > φ′

y (2.25b)
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2.4 Strain and curvature limits

To define the ultimate limit state, a so called “damage-control compression strain” as well as
“damage-control tension strain limit” are recommended by [7]. Following the assumptions
made for the ultimate compression strain and corresponding stress in the confined concrete
model by [5] the ultimate compression state is assumed to be reached when the confining
reinforcement fractures. Hence, the formulation for the ultimate compressive strain was
derived by equating the strain energy absorbed by the concrete post-peak to the strain
energy absorbed by the confinement. This yields the following expression for the ultimate
compression strain εc,dc:

εc,dc = 0.004 +
C2�vfyvεsu

C1fcc
= 0.004 + 1.4

�vfyvεsu
fcc

(2.26)

where the coefficients C1, C2 depend on the shapes of the stress-strain relationships of
concrete and steel and fcc is the confined concrete strain according to Equation (3.3) [5].
The average ratio C2/C1 is considered to be 1.4. The ultimate strain of the unconfined
concrete is assumed to be εc,u = 0.004. Because this relation is based on pure axial
compression and does not consider confinement provided by an adjacent member, such
as a foundation, [7] state it underestimates the actual ultimate strain at combined flexure
and axial force by about 23 - 37%. A criterion for buckling of the longitudinal bars is not
included in the limit, but the authors include a recommendation for the maximum spacing
of the stirrups to prevent buckling before εc,u is reached.

With regard to the steel strain limit, the authors advise to use a lower limit for structures
subjected to cyclic loading than for those subjected to monotonic loading: Under cyclic
loading, the ultimate tensile strain capacity is affected by previously experienced compres-
sion strains in reversed cycles. Due to previously experienced plastic tensile strains, the
reinforcement is also prone to buckling under compressive loading and hence to low cycle
fatigue. Furthermore, reinforcement bar slip and tension shift are stated to contribute to a
strain capacity under cyclic loading that is lower than the strain determined with monotonic
testing εsu. Hence, [7] suggest to limit the strain capacity under cyclic loading to 60% of the
monotonic value:

εsu,cyc = 0.6εsu (2.27)

In [6], experimentally determined strains of an extensive database at ultimate displacement
were examined and employed to derive strain limits for cyclic loading. Ultimate displace-
ment was defined as corresponding to a drop of the lateral load of at least 20%. For the ul-
timate concrete compression strain εcu,cyc, the authors propose a formulation that accounts
for the size of the area of the confined concrete under compression and the effectiveness
of the confining reinforcement:

εcu,cyc = 0.0035 +

(
1

xc,con

)3/2

+ 0.4
kcon�vfyv

fcc
(2.28)

where xc,con is the depth of the neutral axis in the confined core in mm. Factor kcon accounts
for the effectiveness of the confinement according to [34]:
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kcon =

(
1− s

2bcon

)(
1− s

2hcon

)(
1−

∑
s2l,c/6

bconhcon

)
(2.29)

where s is the stirrup spacing and hcon, bcon are the dimensions of the confined core, all
measured to the centerline of the stirrups, and sl,c the distance between those longitudinal
bars that are confined by stirrup corners or cross ties.

For the ultimate tensile steel strain, [6] suggest the following value:

εsu,cyc =
3

8
εsu = 0.375εsu (2.30)

Instead of defining limit strains with which an ultimate curvature is defined, [35] directly pre-
sented curvature limits. Based on a numerical study, ultimate curvature, drift, and rotation
values were derived. The ultimate state here refers to the point at which one of the following
occurs: Either the shear capacity has slowly degraded to 85% of the peak load or experi-
enced a sudden drop, or the steel strains exceed 10% on the tension side or buckling and
spalling strain on the compression side. The objective of the study by [35] was to investi-
gate the influence of certain parameters on the deformation capacity, namely that of aspect
ratio Ls/h, axial load ratio P/(Agfc), wall length h, detailing of boundary elements, trans-
verse reinforcement ratio �v and shear stress v. All resulting limit responses have been
derived from a finite element model, in which the two bottom stories were modeled with
solid continuum elements. The curvatures were computed from the strains in the elements
along the edge of the wall. The ultimate curvature was obtained by extrapolating the linear
approximation of the curvature profile of the two bottom stories to the base. Afterward, a
regression analysis was performed on all curvatures obtained for the various investigated
parameters. This yielded the following formulation for the ultimate curvature:

φu =
1

h
0.8klkcsεsu

(
1− 2.4

P

Agfc

)(
1− 1.5

fsv�v
fc

)(
Ls

h

)0.29

(2.31)

where the correction factors kl and ksc take into account the loading conditions and the
shape of the cross section and are 0.75 and 1.0 for cyclic loading and rectangular cross
sections, respectively.

Besides the above mentioned strain limits, which provide an estimate for the damage of
the material, strain limits based on stability considerations have been developed as well.
Under cyclic loading the edges of a wall may be subjected to large tensile strains and
hence feature cracks in which the reinforcement yields. Due to irregularities in the structure
and – in the event of an earthquake – out of plane response, the compression force under
reversed loading might not be introduced centrically and hence cause out-of-plane buckling
[36]. To prevent this buckling, equations to compute the minimum wall thickness have been
developed. They are based on the expected tensile strain in the plastic hinge and the
assumption that the compression force acts with the largest possible eccentricity [36, 37].
If the wall thickness is given, these equations can be rearranged to yield the maximum
allowable tensile strain. However, this stability problem occurs mainly if the wall thickness
is small in relation to the height over which plastic tensile strains occur, which is not the
case for the wall-type piers considered herein.
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2.5 Flexural response

2.5.1 Bilinear approaches

Using the results from the moment-curvature analysis and the mentioned strain limits, one
can predict the overall flexural force-deformation response of a structural member. A very
simple approach to do so is the bilinear approach presented in [7]. With this approach,
the response is described by two characteristic points only. The first point is the so-called
nominal yield point, which is a fictitious point inserted after the point at which the yield
strains of the materials are first reached. The second point corresponds to the ultimate
displacement value. To compute these values, the following equations are used:

F =
M

Ls
(2.32a)

Δy = φy (Ls + Lsp)
2
/3 (2.32b)

Δu = Δy +Δp = Δy + φpLpLs = Δy + (φu − φy)LpLs (2.32c)

where φy is the nominal yield curvature according to Equation (2.33) and φp is the plastic
curvature. Using Ls as lever arm to calculate the deformation is strictly speaking only
correct if the center of plastic rotation is at the member end. This holds if the plastic hinge
length is twice the strain penetration length Lp = 2Lsp. However, it is deemed an acceptable
approximation even if Lp > 2Lsp. Nevertheless, [7] note that predictions could in this case
be improved by using the distance between the point of contraflexure and the center of the
plastic hinge.

The nominal yield curvature is not obtained from section analysis, but computed as first
yield curvature times the ratio of nominal to first yield moment. The nominal yield moment,
on the contrary, is obtained from moment-curvature analysis. It corresponds to the lowest
curvature at which either εs = 0.015 steel strain or εc = 0.004 concrete strain are reached.
These strains are defined as serviceability limit strains, as they are assumed to correspond
to residual crack widths of approximately 1 mm and the onset of spalling of concrete, re-
spectively.

φy =
MN

My
φ′
y (2.33)

A frequently found variation of the above equations assumes that there is no influence of
strain penetration at yield and the center of rotation is in the center of the plastic hinge.
With these modifications, the flexural displacement is calculated as:

Δu = Δy +Δp =
φyL

2
s

3
+ (φu − φy)Lp(Ls − 0.5Lp) (2.34)

Several similar suggestions to calculate the drift at yield and ultimate have been made by
Fardis and his co-workers in [22, 23, 31, 6] and [38]. In general, the equations proposed
therein have been slightly changed over the years by fitting them to a more extensive ex-
perimental database. Different recommendations were made for varying cross sections
and loading conditions, i.e. monotonic or cyclic loading. Originally, all equations were pre-
sented in a form that yields the rotation, but to be consistent with the previously presented
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equations they are multiplied with the shear span herein. As mentioned, the formulations
depend on the cross section shape. For brevity, only the ones recommended for wall-type
or hollow rectangular bridge piers [31] are noted here. They include, contrary to the pre-
vious equations, a shear component and a factor accounting for a potential deformation
increase due to inclined shear cracking. Based on the database used in [31] criteria for
the application of the equations have been set. They include boundaries for the normal
force ratio n = P/(Agfc), aspect ratio and transverse reinforcement ratio. Those criteria
are assumed to ensure that flexural yielding of the test units occurs before shear failure or
yielding of the transverse reinforcement and are met by the tests reported in [1, 3].

At first yield of either concrete or steel, the displacement is assumed to be composed of
flexural Δfl and shear displacement Δs as well as displacement due to anchorage slip Δsp:

Δ′
y = Δfl +Δs +Δsp

Δ′
y = φ′

y

Ls + kvz

3
Ls + 0.0013Ls + kslLs

φ′
ydblfy

8
√
fc

(2.35)

In [31] it is recommended to multiply the theoretical yield curvature φ′
y by 1.02 as this was

the median of the predicted to experimentally determined moment Mpred/MExp. However,
the moments were calculated assuming bilinear constitutive laws for concrete and steel.
If shear cracking occurs before flexural yielding, the factor kv is set to 1 to account for
an increased top displacement due to tension shift. Shear cracking is assumed to occur
before flexural yielding if Vcr < My/Ls, where Vcr is the shear resistance of a member
without transverse reinforcement according to Equation (2.55b) from [11].

The second component in Equation (2.35) represents the shear deformation and is a purely
empirical component obtained from data fitting. In [22], where this term was presented in
a slightly different form, the authors state that the component corresponds to the difference
between the measured total top displacement and the calculated flexural top displacement.
This difference was determined for members where bar pullout was physically impossible,
for instance because the plastic hinge was at the center of a simply supported beam.

The third component is the rotation caused by pulling the reinforcement bars out of the
foundation. When pullout is not possible, ksl = 0, otherwise ksl = 1. Since a constant bond
stress of τb =

√
fc is assumed in the elastic range, the third component can be derived

from Equations (2.15c), (2.16b) and (2.22).

The authors also recommend using the rotation θy = Δ′
y/Ls instead of φ′

y to calculate the
effective flexural stiffness at yield, EIeff = MyLs/(3θy), whereas in [23] a more complex
equation is presented for EIeff.

The ultimate displacement is calculated according to the following formulation [6]:

Δu = Δ′
y + kslΔθu,slipLs +

(
φu − φ′

y

)
Lp

(
1− Lp

2Ls

)
Ls (2.36)

The rotation due to bar slip that has to be added to the yield rotation is estimated as:

Δθu,slip,mon =
φ′
y + φu

2
16dbl (2.37a)

Δθu,slip,cyc =
φ′
y + φu

2
10dbl (2.37b)
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These formulations were determined from data fitting. It is noteworthy that neither shear
nor additional deformations due to inclined cracking, which have been explicitly included
in Equation (2.35), are included in Equation (2.36). This means that these deformation
components are either, contrarily to what one might expect, not assumed to increase after
yield or they are accounted for in the choice of the plastic hinge length. The authors them-
selves state that they were not satisfied with the scatter of the results obtained with this
equation together with the plastic hinge length according to Equation (2.6). Therefore, they
developed alternative empirical models. Those empirical formulations are the basis of the
equations included in [24], which are presented in Section 2.5.3. However, the agreement
of predictions and experiments does not differ significantly according to the table provided
in [6]. The median predictions are generally good, but the scatter is considerable in all
cases with coefficients of variation between 30% and 50%.

2.5.2 Refined approach according to Priestley et al.

A “refined” approach for the prediction of the entire load deformation relationship is pro-
posed by [7]. According to the authors, this might be used for comparison with experimen-
tal results. In this approach, the strain penetration is only considered after flexural cracking
Δcr and the deformation Δ after first yield Δ′

y is calculated from the difference in current
and first yield curvature. Between cracking and first yield displacement, the deformation is
simply interpolated linearly.

Δcr = φcrL
2
s/3 φ = φcr (2.38a)

Δ′
y = φ′

y (Ls + Lsp)
2
/3 φ = φ′

y (2.38b)

Δ = Δ′
y

M

My
+

(
φ− φ′

y

M

My

)
LpLs φ > φ′

y (2.38c)

2.5.3 Drift according to Eurocode

Annex A of [24] includes several equations to calculate yield and ultimate deformations
of structural components for seismic assessment. The yield deformation of rectangular,
barbelled or T-shaped walls can be estimated according to the following equation:

θ′y = φ′
y

Ls + kvz

3
+ 0.002

(
1− 0.135

Ls

h

)
+

εydblfy

(d− d′)6
√
fc

(2.39)

where d− d′ is the distance between tension and compression reinforcement. To compute
the ultimate drift the following equation is proposed:

θu = kd
1

γel

1

1.6
0.016 · 0.3n

(
max(0.01;ω′)
max(0.01;ω)

fc

)0.225(
Ls

h

)0.35

25kcon�v
fyv
fc 1.25100�d (2.40)

where ω′ = �compfy/fc, ω = �tensfy/fc are the mechanical reinforcement ratios of the
longitudinal reinforcement in compression and tension, n = P/(Agfc) is the normal force
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ratio, kcon is a factor accounting for the effectiveness of the confinement according to Equa-
tion (2.29) and �v, �d are the ratios of the transverse and diagonal reinforcement. γel is a
safety factor set to 1.5 for “primary” and 1.0 for “secondary seismic elements” and factor
1/1.6 is recommended to compute the drift of walls. Thus, for any other type of structure,
drift values that are more than 60% larger are predicted with this equation. If no detailing
for earthquake resistance is provided, factor kd is kd = 0.825 and otherwise kd = 1. The
formulation is based on work that was presented over several years in e.g. [22] and [6],
where it was given in a slightly different form. In the latter, factor 0.016 was replaced by a
longer formulation taking into account the steel type, loading and slip. The ultimate state
from which the formulation was derived was defined to correspond to a 20% drop in the
shear force capacity. Some noteworthy trends that are included in the formulation are an
increased drift with i) decreasing normal force, ii) increasing compressive to tensile rein-
forcement ratio and iii) increasing slenderness. This equation is used to predict the “limit
state of near collapse” according to Section 2.1 in [24]. It was statistically derived from a
large database and can therefore also be compared to the drift capacity models presented
in Section 4.2.2.

As an alternative to Equation (2.40), an equation to calculate the ultimate drift based on a
plastic hinge approach is included in [24]. Together with the plastic hinge length according
to Equation (2.7), the ultimate rotation may be calculated as:

θu =
1

γel

(
θ′y + (φu − φ′

y)Lp

(
1− 0.5Lp

Ls

))
(2.41)

2.6 Shear response

2.6.1 Shear deformations based on axial strains

So far, only the flexural response of a RC structural member has been treated. But, es-
pecially for wall-type structures, shear deformations constitute a significant part of the total
deformation and need to be considered. Based on the observation that the shear to flexu-
ral deformation ratio of flexure-dominated walls is roughly constant, a model to account for
shear deformations in conjunction with plastic hinge modeling was presented in [8]. The
constant ratio was observed for walls whose shear mechanism was not significantly de-
grading, such as capacity designed walls. Furthermore, the simplifying assumption that
significant shear deformations only occur in the plastic hinge, where a constant curvature
is assumed, was made. If, additionally, the strain state in this region is regarded as homo-
geneous, the shear strain γ can be expressed using relations from Mohr’s circle:

γ =
εl

tan θ
+ εv tan θ − 2ε2

sin(2θ)
(2.42)

where εl is the longitudinal strain along the centroidal axis of the wall, εv the transversal
strain, θ the crack angle and ε2 the principal compressive strain which is assumed to be
the strain along the compression strut. It was concluded that the transversal and compres-
sive strains were small in the examined cases and that the shear strains could hence be
expressed as a function of the axial strains only. As γ is assumed constant along the length
of the plastic hinge Lp and approximately zero outside it, the shear deformation can be
estimated as:
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Δs ≈ γLp =
εl

tan θ
Lp (2.43)

where θ is an average angle of the crack pattern in the plastic region. If both elastic and
inelastic flexural deformations are computed with a plastic hinge mechanism

Δfl = φLpLs (2.44)

the shear to flexural deformation ratio can be expressed as:

Δs

Δfl
= 1.5

εl
φ tan θ

1

Ls
(2.45)

In this case, θ is the crack angle at the top of the fan-like crack pattern, where cracks start
to be rather parallel and 1.5 is an empirically determined correction factor.

2.6.2 Shear deformations based on crack inclination

Based on the same observation of a constant ratio between shear and flexural deforma-
tions in the inelastic deformation range, an equation to include the shear deformations in
the plastic hinge models is also suggested in [28]. The idea behind the model is that shear
deformation stems from deformation in shear cracks. The elongation of the longitudinal
reinforcement due to flexure causes a rotation at the crack and thus causes horizontal de-
formations, which is defined as shear deformation. Shear deformation is assumed to occur
between the lowest crack, with an estimated crack angle of 60◦, and the highest crack
whose tip reaches the base, with an angle θmax. Based on the examined test data, it was
concluded that 35% of the flexural displacement stem from the deformation in between
these two cracks and contribute to the shear deformations. Hence, the shear deformation
was related to 35% of the flexural deformation, which is the reason why a factor of 0.35 is
included in Equation (2.46). Because of the dependence on the crack angle, the Δs/Δfl

relationship is partially geometrical, which is also evident in the included inverse aspect
ratio h/Ls. Since it was found that this approach underestimated the shear deformation if
little transverse reinforcement was provided or the web was thin, a correction factor α was
introduced. With this, deformations are increased if the ratio of shear demand to diagonal
tension capacity V/Vn or shear demand to web crushing capacity V/Vwc is high. Vn is as-
sumed to be the total capacity according to the “revised UCSD model”, see Equation (4.1).
Based on the considerations mentioned in this paragraph, the shear to flexural deformation
ratio follows as:

Δs

Δfl
= α0.35 (1.6− 0.2θmax)

h

Ls
(2.46a)

1 ≤ α =

(
V

Vn
+

V

Vwc

)
≤ 2 (2.46b)
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Shear deformations are assumed to occur in the region over which plasticity spreads Lpr.
To predict this length Lpr, an equation derived from moment equilibrium along the crack
was proposed, which can be rearranged to yield the crack angle:

cot θmax =
Lpr

z
=

1

z

√
2(T − Tyav)z

(Avfyv)/(s) + (fctb2dcr)/(1.4z)
(2.47a)

Tyav = 0.5
(
T ′
y + Ty

)
(2.47b)

where T is the tensile force resultant, T ′
y is the tensile force resultant at first yield of the

extreme steel fiber, Ty is the tensile force resultant when either a tensile steel strain of
εs = 0.015 or a compression strain of εc = 0.004 first occur and dcr is the lever arm between
the tensile and compressive force resultant.

2.6.3 Shear deformations based on stiffness

[7] present an approach in which shear deformations are calculated for three different
stages of the response: prior to shear cracking, prior to attainment of the nominal flexu-
ral strength and in the inelastic range. Before shear cracking, while the structural member
is assumed to be elastic, it is suggested to estimate the shear deformations using the
elastic shear stiffness together with the relation of cracked to uncracked flexural stiffness.
Shear cracking is estimated using the concrete component of the “revised UCSD model”
with kμ = 0.29, see Equation (4.1). The effective shear stiffness Ksh,eff is computed as
follows:

Ksh,eff =
GAsh

Ls

EIeff

EIg
(2.48)

where Ash = 0.87Ag is the shear area and G = 0.43E the shear modulus. The relation
between the effective and uncracked flexural stiffness, EIeff and EIg, respectively, can be
obtained from moment-curvature analysis. Using this stiffness, the shear displacement at
shear cracking is:

Δsh,1 =
Vc

Ksh,eff
(2.49)

Once the nominal flexural strength is reached, a unitary shear stiffness Ksh,cracked, based
on a strut-and-tie model with a 45◦ compression strut is defined. This shear stiffness
equates to:

Ksh,cracked =
0.25�v

0.25 + (Es/Ec)�v
Esbd (2.50)

where �v is the transverse reinforcement ratio, Es and Ec are the modulus of elasticity of
steel and concrete, respectively, and b and d the width and effective depth of the sec-
tion. Using this stiffness, the shear deformation corresponding to the attainment of nominal
flexural strength is:
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Δsh,N = Δsh,1 +
(VN − Vc)

Ksh,cracked
Ls (2.51)

Afterward, in the plastic deformation range, assuming a constant ratio of shear to flexural
deformations Δsh,N/Δfl,N is suggested.

2.6.4 Shear crack angles

To determine the crack angle θ that is needed to evaluate Equation (2.42), [8] recommend
an equation given in [39]:

θ = arctan

(
z

V

(
fctb+

Asvfyv
s

))
< 90◦ (2.52)

where z is the internal lever arm, V the shear force, fct the concrete tension strength and
Asv, fyv and s are the transverse reinforcement area, yield strength and spacing. Originally,
the equation was presented as shear strength equation for beams and θ denotes the angle
between the longitudinal axis of the structural component and the crack.

Another possibility to calculate the crack angle for shear panels has been suggested in [40],
based on a number of MCFT calculations:

θ = (29◦ + 7000εl)
(
0.88 +

sxe
2500

)
≤ 75◦ (2.53a)

sxe =
35sl

ag + 16
(2.53b)

where εl is the unitless strain along the member axis at shear failure, sl the horizontal
distance between the longitudinal reinforcement bars and ag the maximum aggregate size.
The equation contains components accounting for the influence of the longitudinal strain
(first term) as well as for a size effect (second term) and was developed for cases in which
εl was below yield strain. Equally to Equation (2.52) this equation estimates the angle
between longitudinal member axis and crack.

For fully cracked concrete membranes, subjected to plane stress conditions, the crack an-
gle may also be derived based on the elastic energy [9]. Both concrete and steel are
considered to be linear elastic in this case and Poisson’s effect is neglected. It is further-
more assumed that the concrete is subjected only to compression stress and the tensile
strength of the concrete is zero. The crack angle corresponds in this case to the angle of
the principal compression stress, i.e. they are perpendicular to the principal tensile stress.
The crack angle can then be derived from equilibrium equations and the minimization of
elastic energy. If the membrane is subjected to stresses in the direction of both axes and
shear, the crack angle will depend on the applied stresses. If the membrane is subjected
to only shear, the equation for the crack angle relative to the x-axis simplifies to [9]:

tan θ = 4

√
�y + kE�x�y
�x + kE�x�y

(2.54)
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where kE is the ratio of the modulus of elasticity of steel and concrete kE = ES/Ec and
�x and �y are the geometrical reinforcement contents in x and y direction, respectively.
The crack angles obtained with this relatively simple equation correspond well to the maxi-
mum crack angles predicted with the software Membrane-2000 [41], which is based on the
MCFT. For this study, equations to predict a representative crack angle of a cantilever wall
subjected to lateral load are necessary and using an equation that is valid for a membrane
subjected to pure shear might seem approximate. However, within the wall the stress state
varies along the height of the wall as well as along the width of the section and it is thus
difficult to define a membrane with a representative stress state. As this would furthermore
complicate the determination of the crack angle significantly, only the equation for pure
shear, i.e. Equation (2.54), is considered here.

2.6.5 Shear cracking

As indicated in previous sections, shear deformations are sometimes estimated to increase
once shear cracking occurs, see for instance Equations (2.35) and Section 2.6.3. For the
former, it is suggested to assume shear cracking initiates once the shear resistance of a
member without shear reinforcement according to [11] is exceeded. With the recommended
standard values this yields:

Vc =

[
k

(
1 +

√
0.2

d

)
f1/3
c + 0.15

P

Ag

]
bd (2.55a)

k =
180

γc
(100�l)

1/3 ≥ 35

√
1 +

√
0.2

d
f1/6
c (2.55b)

where b and d are the section width and the effective flexural depth in m and γc is a safety
factor for concrete which is assumed to be one for comparison with experimental data.
The upper bound for the size effect factor is

√
0.2/d ≤ 2.0. Since a crack angle of 45◦ is

assumed for the formulation one may conclude that Vc corresponds to the force at which the
first cracks steeper than 45◦ are expected to form. Based on results of MCFT analyses [42]
performed regression analysis and proposed a formulation depending on the vertical load
P and the shear stiffness of the uncracked structure GA. With units MN and m, it follows
as:

Vcr =

(
P

8757
+

1

6351

)
GA

Ls
(2.56)
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2.7 Influence of lap-splices

2.7.1 Behavior of lap-splices under cyclic loading

Several experimental studies have been conducted to investigate the behavior of lap-splices
under cyclic inelastic loading. An overview of selected studies including their main findings
is presented in [43]. In the following, a few studies and findings which provide insights into
the behavior of splices in general and are of interest for this project are summarized.

The influence of load history, transverse and longitudinal reinforcement as well as lap-splice
length was investigated in uniaxial monotonic and reversed cyclic tests by [44]. A test setup
with square columns with concrete blocks at both ends, through which the loading was ap-
plied, was used in this study. The cyclic load history comprised six fully reversed cycles
between 1.0fy and 1.25fy in tension and approximately 0.31 − 0.42fc in compression be-
fore the test unit was loaded to failure in tension. Transverse reinforcement was found to
have more influence on the deformation capacity than on the strength of the relatively long
splices (44 − 60dbl) tested in this study. All splices were sufficiently strong to transfer the
yield load, but the splices with less transverse reinforcement failed at a smaller displace-
ment and under lower ultimate load than those with larger transverse reinforcement ratios.
Several other researchers also found that the behavior of lap-splices subjected to reversed
inelastic cyclic loading is significantly improved in terms of attained ductility or number of
cycles prior to failure, if sufficient transverse reinforcement is provided (e.g. [45, 46, 47]).
However, in another experimental study on beams with lap splices, the effectiveness of the
transverse reinforcement was found to depend also on the relative rib area of the longitu-
dinal bars and the strength of the aggregate used in the concrete [48]. Inconsistent obser-
vations have been made regarding the optimum distribution of the confining reinforcement:
concentrated at the ends of the splice or evenly distributed [43]. With regards to the length,
some researchers argue that a mere increase of lap-splice length is no useful measure to
improve the earthquake resistance of splices, due to an “unzipping” effect of the splitting
failure [49]. Others, on the contrary, include the length of the splice as factor for the strain
criteria, based on experimental data [6].

Comparison between the monotonically and cyclically loaded tests [44] showed that the
load history applied in this study, with six fully reversed cycles, did not have a significant
effect on strength or deformation capacity of the test units. However, load histories with
more cycles proved more detrimental than static or repeated loading in terms of sustained
deformation ductility elsewhere [46, 47]. In the latter studies it was also found that the
number of sustained cycles is very sensitive to the peak load applied in the cycles.

2.7.2 Modeling approach

A lap-splice at the base of a pier may result in a reduced flexural strength of the section if
the splice length is insufficient. However, even if the length is sufficient to transfer the load
under monotonic loading, the strength may still be reduced in the inelastic deformation
range under cyclic loading. Initially, the concrete surrounding a splice transfers the load
from one reinforcement bar to another. If the splice is not well confined it will thus loose
its load bearing capacity once the splitting cracks forming around the bars (compare Fig.
2.3b) are too wide to transfer stresses. If, on the contrary, sufficient confinement is provided,
some force may still be transferred when the concrete is cracked.
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Figure 2.3: Residual moment of a section according to [50] to the left and lap-splices with splitting cracks to
the right.

The influence of lap-splices on the behavior of a pier can be modeled by reducing the
flexural strength of a section once the strain that triggers degradation of the lap-splice
has been reached, as suggested in [50]. The procedure presented therein consists of
three steps. First, the load bearing capacity of the splice is checked based on the tensile
strength of the concrete or the confining reinforcement of the splice. Second, if the flexural
strength of the section is not reduced due to a weak splice, it is assumed to degrade under
cyclic loading once the compression strain causing microcracking of the concrete has been
reached. It is argued that, when these cracks develop, the tension strength of the concrete
and thus the capacity of the splice is reduced. In a third step, the residual moment capacity
Mr is calculated from the maximum eccentricity of the normal force within the core concrete,
see Fig. 2.3a. The normal force is assumed to result in a stress block with width bc and
length a = P/(0.85fcbc). With this assumption, the residual moment follows to be:

Mr = P
hc − a

2
(2.57)

Based on experimental results of circular and rectangular bridge piers, the authors sug-
gested to assume that the residual capacity is reached at curvature ductility μφ ≈ 8 or at
μφ = 8 plus the curvature ductility at which degradation starts: μφ = μφ,deg + 8, respec-
tively. In the following sections, some possible definitions of limit strengths and strains are
summarized. The aim is to provide a concise overview over different modeling approaches
rather than a complete survey of existing models. Therefore, the overview focuses on re-
cent developments and models for cyclic loading. Generally, the strength limits may for
instance be used in a section analysis to limit the tensile strength of the reinforcement to
the tensile strength of the lap-splice. The strain limits may equally be used in the section
analysis to limit the maximum tension or compression strain, whichever applies. Hence,
the moment or curvature capacity of a section may be limited due to the lap-splice.

2.7.3 Strength of lap-splices

The transfer of forces in a lap-splice is often described with two mechanisms: The bond
mechanism transferring the force from one bar to the surrounding concrete and a truss
mechanism transferring the load from one reinforcement bar to another through concrete
and confining reinforcement. The concrete may in this case act as both strut (compression
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strength) and tie (tensile strength) while the transverse reinforcement provides a tie. The
bond and truss mechanism interact in a real structure, but models assume that one or the
other controls the strength of the lap-splice. The strength of the lap-splice is therefore either
expressed in terms of the bond strength between reinforcement and concrete or in terms
of the tensile strength of concrete. In the first case, the force capacity of a lap-splice is
assumed equal to that of an embedded bar with the same length. In the second case, the
maximum tensile force of a splice is assumed to be the force which is necessary to form a
splitting crack around the splice.

In [50] the resistance of the splice is estimated with the second approach. The maximum
possible force of a reinforcement bar Tb is thus expressed in terms of the concrete tensile
strength fct as follows:

Tb = Abfs = fctpls (2.58a)

p = 0.5sl + 2 (dbl + c) ≤ 2
√
2 (c+ dbl) (2.58b)

where ls is the length of the lap-splice, sl the spacing of the longitudinal bars measured
between the center lines, dbl the diameter of the longitudinal reinforcement bars and c the
clear concrete cover of the longitudinal bars, see Figure 2.3b. The limit in the second equa-
tion accounts for the possibility that two cracks with a 45◦ angle could form at a splice
instead of the cracks in between the splices and perpendicular to the surface, as indicated
in Figure 2.3b. Furthermore, [50] advised that the lap-splice should have sufficient confine-
ment in case the tensile strength of the concrete is lower than expected. To calculate the
required confinement, a coefficient of friction of 1.4 is recommended for the force trans-
ferred on the surface of the splitting crack and a limit strain of ε = 0.0015 for the stirrups to
restrain crack opening. As the confinement is only active when the concrete is cracked, the
authors suggest to not sum up the resistance provided by the two mechanisms.

A similar approach to determine the strength of a splice has been suggested by [51]. Also
here, the strength is expressed in dependence of the concrete tensile strength. How-
ever, the model was not derived purely theoretically but validated against an experimen-
tal database containing 203 beams with unconfined splices and 278 beams with confined
ones. Splice length varied between ∼ 10 dbl and 58 dbl with bar diameters between 9.5 mm
and 57 mm. There are two main differences between this model and the preceding one:
Splitting cracks are assumed to either form only in between the spliced bars over the width
of the beam (“side splitting”) or only perpendicular to the beam surface (“face splitting”). The
bond stress is assumed to vary along the splice and the radial tensile stresses around the
bars are assumed to decrease with increasing distance to the bar. To account for this vari-
ation of stresses, the forces are computed based on effective crack areas instead of total
crack areas. Based on the available experimental data, the following geometrical relations
for the effective concrete cover c and splice length ls were derived:
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cb,eff = cb
0.77√
cb/dbl

≤ cb (2.59a)

cso,eff = cso
0.77√
cso/dbl

≤ cso (2.59b)

csi,eff = csi
0.77√
csi/dbl

≤ csi (2.59c)

ls,eff = ls
53.48√
ls/dbl

4
√
fc

≤ ls (2.59d)

where cb is the clear cover between the longitudinal reinforcement and the bottom face
(corresponding to c in Fig. 2.3b), csi = sl − 2dbl the clear distance between longitudinal
reinforcement bars and cso the clear cover between a longitudinal reinforcement bar and
the side face. With the effective crack areas, the splitting forces Fsp can be calculated:

Fsp,side = ls,eff [2cso,eff + (nbl − 1)2csi,eff] fct (2.60a)

Fsp,face = ls,eff

[
2cb,eff(0.1

cso
cb

+ 0.9) + 2cb,eff(nbl − 1)

(
0.1

csi
cb

+ 0.9

)]
fct (2.60b)

with
(
0.1

cs
cb

+ 0.9

)
≥ 1.0

where nbl is the number of lap-splices at the considered face of the member. The correc-
tion factor 0.1(cs/cb) + 0.9 accounts for the observation that the crack inclination and thus
the crack surface increased with an increasing concrete cover at the side. If transverse
reinforcement is present in the splice area, an increase of the splice resistance due to the
provided confinement is considered:

Fst,side =
∑

Avbfsv = nstnst,lAvbfsv (2.61a)

Fst,face =
∑

Avbfsv = nstnblAvbfsv (2.61b)

where nst is the number of stirrups crossing the splitting cracks, nst,l the number of stirrup
legs, fsv the stress in the stirrups and Avb the cross sectional area of one transverse re-
inforcement bar. From the test data, the angle of the resultant, which is composed of the
force along the longitudinal reinforcement bar and the splitting and transverse reinforce-
ment forces perpendicular to it, was found to be β = 20◦. With this angle, the maximum bar
stress can be evaluated:

fs =
Fsp + Fst

nblAsb tanβ
(2.62)

Note that in this model the resistance due to the tensile strength of concrete and due to
confinement are summed up.

A formulation based on the bond strength is proposed by [31] to estimate the yield mo-
ment of a section with spliced reinforcement. Instead of using the yield strength of the
reinforcement as limit, it is suggested to use the minimum value of yield and bond strength.
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To estimate the bond strength a formulation now included in the fib model code [52] is
recommended:

fs = 54

(
fc
25

)0.25(
25

dbl

)0.2(
ls
dbl

)0.55
[(

cmin

dbl

)0.33(
cmax

cmin

)0.1

+ kmKtr

]⎧⎨
⎩≤ kb

√
fc4ls
dbl

≤ fy
(2.63)

where cmin = min(cb, cso, csi) and cmax = max(cso, csi) are the minimum and maximum
value of the concrete covers and distance between longitudinal bars, respectively: Con-
finement conditions are considered with factors km and Ktr. The former takes into account
the effectiveness of the confinement and is 12 if a hook of at least 90◦ or comparable is
provided. The latter is Ktr = nstAvb/(ndbls) ≤ 0.05 where nst is the number of stirrup legs
crossing a splitting surface at one section, nbl is the number of considered splices along
a splitting crack, s is the stirrup spacing and Avb is the cross sectional area of a stirrup.
Factor kb considers bond conditions and is 2.5 or 1.25 for good and poor bond conditions,
respectively.

Another simplified expression has been proposed in [31] and adopted in EC8 Part 3 [24]:

fs = min

⎧⎪⎨
⎪⎩
fy

ls
ls,min

fy =

√
fcls

0.3dblfy
fy

(2.64)

[31] recommend to use this equation only when properties of a member are within the range
of those included in the database for derivation of the equation. Otherwise Equation (2.63)
should be applied. With regard to the lap-splice, the piers investigated here (see Table 3.1)
meet all criteria, the only difference is that the columns in the database were more slender
with a minimum aspect ratio of 2.75. In EC8 Part 3 the use is only restricted to splices with
deformed, straight bars.

2.7.4 Strain limits

As mentioned previously, the strength of a section with spliced bars might degrade once
certain strains are exceeded in either tension or compression. Hence, the strain limit which
defines the ultimate curvature of a section with a lap-splice should correspond to the strain
at which splice failure initiates. [50] assumed this strain to be the concrete compression
strain corresponding to peak stress, εc = 0.002, because at this strain microcracking of the
concrete initiates. [50] suggest this strain limit regardless of any confinement.

A database of experiments with spliced reinforcement, mainly on columns and beams, was
evaluated by [31, 6] to derive relations for yield and ultimate deformations. The latter was
defined as corresponding to a 20% drop of lateral force. It is noteworthy that [6] observed
in their database that members with long splice lengths had larger ultimate rotations than
members with continuous reinforcement. Hence, they recommend to consider both bars of
the splices in compression for the section analysis, which results in a higher flexural stiff-
ness of the section and thus in larger curvature estimates and therefore partially evens out
this underestimation. Furthermore, limiting stress and strain in the reinforcement according
to the length of the splice was recommended. In combination with the plastic hinge length
and deformation estimate according to Equations (2.6) and (2.36), respectively, the steel
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strain at ultimate limit state should be limited to a fraction of the limit strain for continuous
bars under cyclic loading εsu,cyc (Equation (2.30)):

εsu,s =

(
1.2

ls
lsu,min

− 0.2

)
εsu,cyc ≥ ls

lsu,min
εy (2.65a)

lsu,min =
dblfy(

1.05 + 14.5
(
1− 0.5 s

hcon

)(
1− 0.5 s

bcon

)
nres

nbl

�vfyv

fc

)√
fc

(2.65b)

where nres/nbl is the ratio of the number of restrained splices nres, which are placed in
a stirrup corner or held by a cross tie, to the total number of splices nbl, s is the center-
line spacing of the stirrups and hcon, bcon are the dimensions of the confined core defined
by the center of the stirrups. The minimum splice length increases with increasing trans-
verse reinforcement spacing, decreasing transverse reinforcement content and decreasing
bond strength, expressed in terms of

√
fc. The transverse reinforcement ratio is inserted

dimensionless and not as percent value. This expression for the length of splices has also
been included in EC 8, Part 3 [24]. There it is suggested to double the reinforcement in
compression in Equation (2.40) and multiply the resulting ultimate drift with ls/lsu,min, if the
latter is smaller than 1.0. [6] did not derive a concrete strain limit explicitly for members with
lap-splices, hence it can be assumed that the limit according to Equation (2.28) was still
valid based on the experimental results included in their database.
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3 Application of plastic hinge models

3.1 Introduction

In the following sections, the plastic hinge models presented in Sections 2.2 through 2.7
are applied to test units VK1 - VK7 [1, 3]. As stated previously, modeling the behavior
of a structural member using a plastic hinge approach is based on the observation that
inelastic curvatures spread approximately linearly over a certain height and can therefore
be substituted with a constant inelastic curvature over half that height. With this approach,
the local curvature is linked with the global deformation, i.e. the top displacement, in a
simple manner. While the assumption of a linear curvature profile roughly holds for the test
units with continuous reinforcement, this is not the case if the reinforcement is spliced at
the bottom. The application of the plastic hinge models to determine the force-deformation
response of those test units rests therefore solely on the notion that even though local
measures (e.g. curvatures) are considerably affected by the splice, global measures (e.g.
top displacement) are similar before the splice fails.

In Section 3.3, the plastic hinge length is determined from the experiments according to the
procedure outlined in Section 2.2.6 and compared to the predicted plastic hinge lengths
according to Sections 2.2.2 through 2.2.5. Furthermore, the influence of some underlying
assumptions on the experimentally determined plastic hinge length and differences be-
tween experiments and predictions are discussed. The influence of strain penetration on
the experimental results is examined in Section 3.4. In Section 3.5 the material models and
assumptions underlying the moment-curvature analysis are presented and the analytical
relation is compared with measurements. In Section 3.6 the predicted and measured flex-
ural responses are compared and evaluated; in Section 3.7 the same is done for the shear
deformations. Section 3.8 briefly discusses the predicted and measured influence of lap
splices on the flexural response. Finally, in Section 3.9, the predicted and measured total
deformations are compared and evaluated.

3.2 Experimental data

To ease the understanding of the following sections, the seven tests that were conducted
within the framework of the research project that this study was a part of are briefly intro-
duced in this section. Some important characteristics, i.e. dimensions, longitudinal and
transverse reinforcement ratios �l and �v, concrete strength fc and lap splice character-
istics, of the test units are listed in Table 3.1. In the graphs in the following sections, the
data of each of these tests is always plotted with its specific marker to ease comparisons
between the graphs.

Figure 3.1 shows the failure modes of the test units. Two test units (VK1 & VK3) failed in
tensile shear combined with a severe damage of the compression zone at the tip of the
shear crack. Test unit VK6, which was a variation of test unit VK3 with higher slenderness,
failed in a flexural shear mode with significant shear cracking and a loss of the concrete
in the compression zone. VK7, which had the largest transverse reinforcement ratio, failed
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Table 3.1: Characteristics of test units VK1 - VK7.

Reference Test unit Ls/h [m] Reinforcement Lap splice fc [MPa]

[1]

VK1 3.3/1.5 = 2.2 �l = 0.82%, �v = 0.08% no splice 39.0

VK2 3.3/1.5 = 2.2 �l = 0.82%, �v = 0.08% 43dbl 35.0

VK3 3.3/1.5 = 2.2 �l = 1.23%, �v = 0.08% no splice 34.0

[3]

VK4 3.3/1.5 = 2.2 �l = 1.23%, �v = 0.08% 43dbl 34.6

VK5 4.5/1.5 = 3.0 �l = 1.23%, �v = 0.08% 43dbl 35.2

VK6 4.5/1.5 = 3.0 �l = 1.23%, �v = 0.08% no splice 44.4

VK7 3.3/1.5 = 2.2 �l = 1.23%, �v = 0.22% no splice 30.0

VK1 VK2 VK3 VK4 VK5 VK6 VK7

Figure 3.1: Sketches of the seven test units [1, 3] which are used for model validation in this chapter after
failure.

due to crushing of the concrete in compression. All test units with spliced reinforcement
exhibited a splice failure with spalling of the concrete surrounding the splice.

Figure 3.2a shows a photo of the test setup. The test units were rigidly connected to the
strong floor by means of post-tensioned bars and rigid horizontal supports and the horizon-
tal force and deformation at the top was applied with a servo-hydraulic actuator. Figure 3.2b
shows a scheme of the instrumentation whose readings are used in this chapter. Each test
unit was instrumented with a rectangular grid of either optical or Demec measurements on
the surface. Furthermore, chains of LVDTs were provided along the sides of the wall over
almost the entire height. The horizontal deformation ΔTop was measured with LVDTs as
well. For further information on the test setup, the testing procedure as well as a compre-
hensive summary of the test results, the reader is referred to the reports [1, 3].
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(a) Test setup

F�Top

Optical
measurement

grid
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chains

Optical targets and strain
gages on reinforcement

(b) Instrumentation

Figure 3.2: Photo of the test setup and drawing of the instrumentation which is used in this chapter.
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3.3 Plastic hinge length

3.3.1 Experimental plastic hinge length

The experimental plastic hinge length Lp has been determined according to the procedure
outlined in Section 2.2.6. To obtain the plastic base curvature φp, curvature profiles along
the height of the test units have been calculated from the measurements of the LVDTs
along the narrow faces of the piers, see Figure 3.3. In these graphs one can see that the
profiles determined from positive and negative loading directions are not absolutely equal,
partially due to a not exactly symmetric crack pattern. Furthermore, significant differences
between test units with spliced (Fig. 3.3a) and continuous (Fig. 3.3b) reinforcement are
visible. While the latter has a roughly linear curvature profile near the base once the crack
pattern is fully developed, the former has not. Curvatures clearly concentrate below (at
0 mm height) and above the splice (at approximately 600 mm height), before the splice is
damaged at LS μΔ= 3.0. At later load steps the curvature concentrates in a few cracks
at the bottom. Thus, only test units with continuous reinforcement are considered for the
experimental determination of the plastic hinge length in the following.

Following the suggestion in [20], the curvatures at positive and negative loading direction at
first cycles were averaged and then approximated with a linear least-square error fit. The
first four curvature measurements above the base crack were used for the linear fit in each
case, because inelastic curvatures were commonly observed up to this value, see Figure
3.4. In these graphs one can also see that while averaging the curvatures may remove
some of the effects of asymmetry, the effect of inclined cracking is still visible and a clear
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Figure 3.3: Curvature profiles of two test units calculated from LVDT measurements.
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Figure 3.4: Mean curvature profiles of test units with continuous reinforcement.

linear trend was not always perceptible, especially before load steps μΔ∼ 1.5 − 2.0 were
reached.

If the plastic hinge length corresponded to half the height over which inelastic curvatures
develop, it could be determined from the intersections between the linear approximations
and the first yield curvature. If the first yield curvature which is obtained from moment-
curvature analysis is used in combination with this technique, lengths from approximately
L′
p = 230mm to L′

p = 413mm are obtained, see Figure 3.5. These lengths do not include
strain penetration effects and are plotted against the base curvature obtained by extrapola-
tion of the linear fit of the inelastic curvature profile. As Figure 3.4 shows, extrapolated base
curvatures that are smaller than 0.01 m−1 mostly stem from curvature profiles for which the
linear fit does not approximate the curvature very well, i.e. the crack pattern in these cases
is not yet fully developed. These results should hence be taken with caution.

To employ the procedure suggested by [20] for the determination of the experimental plastic
hinge length, the experimental plastic flexural deformation Δp,fl needs to be determined.
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Figure 3.5: Plastic hinge length that corresponds to half the spread of plasticity, which is determined from
the linear approximation of the inelastic curvature and the intersection with the analytical first
yield curvature.

It was here not determined according to Equation (2.11), i.e. by subtracting the elastic
flexural deformation as well as the shear deformation from the top displacement, but from
the flexural displacements at each load step and at first yield, both computed by double
integration of the experimentally determined curvature profiles:

Δp,fl = Δfl −Δ′
y,fl

M

M ′
y

(3.1)

In this equation, the ratio of the moment to the first yield moment M/M ′
y is a theoretical

value whereas the displacements are determined from the experimental data. Subtracting
the elastic curvature at the base of the pier φ′

y,aM/M ′
y from the total base curvature φb

yields an estimate of the experimental plastic base curvature φp according to Equation
(2.13). In this equation φ′

y,a is an analytical value obtained from section analysis, see
Section 3.5, and the total base curvature corresponds to the extrapolation of the linear
curvature approximation to the base. With the so obtained plastic base curvature φp and
the previously computed plastic flexural displacement Δp,fl, the plastic hinge length Lp

corresponding to these deformation was calculated according to Equation (2.12). Table
3.2, row one (Lp(Δ

′
y,exp)), and Figure 3.6 summarize the results. In Figure 3.6b the plastic

flexural drift Δp,fl/Ls was plotted against the plastic base curvature φp, to check if the
trend is in fact linear, which it should be if Lp was a constant. Both graphs indicate a
decreasing plastic hinge length with increasing deformation and exhibit some scatter in the
predictions. The observation that plastic hinge lengths decrease with increasing ductility,
if they are determined as outlined in this section, has also been made for other structural
walls [53, 54]. However, Figure 3.6b also suggests that reasonable average deformations
should be predicted when a constant length is used.

One needs to keep in mind that the plastic hinge lengths determined according to Equation
(2.12) contain a strain penetration component, which can be calculated from the extrap-
olated and measured base curvatures, φb and φmeasured, according to Equation (2.14).
This equation is based on the assumption that Lsp is constant in the inelastic deformation
range and rotation due to strain penetration is directly related to Lsp through the plastic
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(b) Plastic flexural drift against plastic base
curvature

Figure 3.6: Experimentally determined plastic hinge lengths Lp (a) and plastic flexural drift (b).
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Figure 3.7: Experimentally determined plastic hinge length without strain penetration component to the left
and experimentally determined strain penetration length to the right.

base curvature φp. In Figure 3.7a the plastic hinge length from which this strain penetration
length has been subtracted is presented. Even though the factor between the upper and
lower bound, framing most of the values, remains approximately two, the absolute differ-
ence slightly decreased. The graph containing the strain penetration lengths Lsp against
plastic curvature φp in Figure 3.7b suggests that also for Lsp, if the rotation due to strain
penetration is related to φp, decreasing lengths Lsp are necessary instead of constant ones.
Predictions of Lsp according to Equations (2.5), i.e. with factor 0.014, and (2.3), i.e. with
factor 0.022, have been included for comparison. The other approaches do not all include a
strain penetration component in the plastic hinge length, but add a deformation component
due to anchorage pullout to the top deformation instead.
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3.3.2 Variations in experimentally determined plastic hinge lengths

a Previous assumptions and observed trends

As mentioned before, the trend of decreasing plastic hinge length with increasing ductility
has been observed for structural walls before, but for circular bridge columns, the inverse
trend has also be observed [55]. To find out why opposite trends were obtained, the as-
sumptions underlying the determination of Lp were investigated, as shown in the following
sections. In the previous section, the center of rotation was assumed to be at the base
of the pier. Furthermore, the first yield flexural displacement as well as the total flexural
displacement were calculated by integrating the curvature profiles obtained from the LVDT
readings. To obtain the first yield flexural displacement, the LVDT readings taken when
the theoretical first yield force according to moment-curvature analysis was reached were
integrated. This means that all deformation values were measured ones and contained the
influence of anchorage pullout. Anchorage pullout was not measured directly in the inelas-
tic range in any test and could hence not simply be corrected for. When the plastic hinge
length was determined, the averaged curvature profile from positive and negative loading
direction was used for the linear fit and the extrapolation of the base curvature φb and the
average flexural deformation of both excursions was taken as corresponding displacement.
Theoretical values from the moment curvature analysis were used for both the first yield
curvature and moment.

b Experimental and analytical first yield displacement

While the detailed experimental values are necessary references to evaluate the accuracy
of a theoretical prediction or assumption, one also needs to bear in mind that in a predic-
tion several assumptions are combined to obtain a result. Hence, an estimate that provides
the best global results in combination with other assumptions is not necessarily the most
accurate estimate of the actual local deformations. In the plastic hinge analysis, a hinge
length estimate is combined with an analytically determined first yield displacement with the
aim to obtain a good estimate of the total flexural deformation. Therefore, a possible influ-
ence of exchanging the experimental flexural deformation at the theoretical first yield load
for the analytical first yield displacement (Δ′

y,a = φ′
y,aL

2
s/3) should be considered. Figure

3.7 shows the plastic hinge length that corresponds best to the actual flexural displace-
ments when the procedure in Section 2.2.6 is followed, whereas Figure 3.8a shows the
plastic hinge lengths that correspond best to the total flexural deformation if only analytical
input values (φ′

y,a,Δ
′
y,a) are used. The latter follow a more constant trend over the ductility

range. At low ductility levels, the flexural deformations are small and an overestimation of
the first yield displacement has a larger relative influence on the predicted plastic flexural
displacements and thus the plastic hinge lengths derived from these.

A change in the trend of experimentally obtained plastic hinge lengths has not only been
observed for VK1 to VK7, but also for the mostly capacity designed walls with slender-
ness Ls/h = 2.26 − 2.28 tested by Dazio [56], refer to Figure 3.8b. As mentioned above,
decreasing plastic hinge lengths with increasing ductility are predicted for these walls as
well when only experimental displacements are used (compare Fig. 15e in [53]). Using
analytical first yield displacements instead even leads to a reversed trend for some walls.
Especially for WSH5, which had a relatively high axial load ratio of n = 0.13 in combination
with a low longitudinal reinforcement ratio of ρ = 0.39, the first yield displacement is grossly
overestimated, which leads to short plastic hinge lengths. The first yield curvature was cal-
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Figure 3.8: Influence of using theoretical first yield displacement on experimentally determined plastic hinge
lengths from which the strain penetration component according to Eq. (2.14) has been sub-
tracted.

culated according to Section 3.5 and the ductilities were calculated using the nominal yield
displacements reported in [53].

As already indicated, the change in the trend is mainly due to the fact that the experi-
mental first yield displacement is overestimated with the analytical expression, which has
a larger relative influence at low ductility levels. For test units VK1 to VK7, the predicted
displacements are 5-36% larger than the measured ones. One possible reason for this is
the neglect of tension stiffening in the moment-curvature analysis, which results in an over-
estimation of the predicted first yield curvature. Another reason is the observed nonlinear
curvature profile along the height of the test unit. Figure 3.9 shows averaged curvature
profiles (VK3: curvature at LS F ′

y South, as no data was available for F ′
y North) at the

load step at which the theoretical yield force was reached that were normalized with the
corresponding analytical curvature φ′

y,a. For comparison, the curvature profile that results
from the moment-curvature analysis (M-φ) is included as well. As the dashed line in the
figure indicates, the curvature along the height is overestimated with the assumption that
it is decreasing linearly. The real curvature profile has a more concave shape, that means
especially the curvatures in the central to upper part of the structure are smaller than as-
sumed. Comparison with the analysis shows that this corresponds well to the results of the
moment-curvature analysis, according to which the pier is at this stage still uncracked in
the upper part. The photos taken of the test units also show that the piers are only partially
cracked when the first yield load is reached. The linear curvature profile on the contrary
would results if the pier had a uniform bending stiffness over the height, i.e. was either fully
cracked or completely uncracked.

c Incorporation of strain penetration

As mentioned previously, slip of the reinforcement bar right above the foundation was not
measured in the inelastic deformation range. Hence, no direct correction for the deforma-
tion component due to anchorage slip could be made. However, by linear extrapolation of
the experimentally determined curvature profiles to the base of the pier one obtains an es-
timate of the base curvature without strain penetration influence. One possibility to correct
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Figure 3.9: Experimental and analytical curvature profiles normalized by the theoretical first yield curvature
and Ls.

for the influence of strain penetration is then to use this extrapolated curvature φb instead
of the measured curvature φmeasured when integrating the curvature profile. By doing so,
the top displacement Δ = Δfl,y +Δfl,p is obtained, whereas, so far, the top displacement
Δ = Δfl,y + Δfl,p + Δsp was computed and the strain penetration length subtracted from
the plastic hinge length.

Figure 3.10a shows the plastic hinge lengths that result if the curvature profile which con-
tains the extrapolated base curvature instead of the measured base curvature is integrated.
Comparison with Figure 3.8a reveals that, again, changing the calculation procedure, has a
pronounced influence at low ductility levels. Besides the correction for strain penetration, all
calculations were performed as in the previous section. The differences between the results
in this and the previous section can be explained by looking at the equations with which
each quantity was determined and the formulation that results for L′

p if all equations are
combined in one. In the previous approach, Lp was calculated from the top displacement
Δfl+Δsp and Lsp = Lb(φmeasured/φb−1) was subtracted afterwards to obtain L′

p = Lp−Lsp.
According to Equation (2.14), Lb is the actual base length of the measurement device. This
means the final equation results as L′

p = Lp − Lb
φsp

φb
, where φsp = φmeasured − φb.

If, on the contrary, the measured curvature at the base φmeasured is replaced with the extrap-
olated curvature φb before the integration of the curvature profile and the top displacement
Δfl is determined, L′

p changes. In this case, the plastic hinge length finally follows to be

L′
p = Lp − Lb

φsp

φb−φ′
y
(1 − Lb

2Ls
). The term (1 − Lb

2Ls
) is approximately one and does hence

not explain the difference between the obtained plastic hinge lengths. But comparison be-
tween the this equation and that of the previous section shows that while in this case the
term Lb

φsp

φb−φ′
y

is subtracted from Lp, the term Lb
φsp

φb
is subtracted from Lp in the previ-

ous case. Especially at small ductility levels, when φb might not be much larger than φ′
y

(compare Figure 3.4), this changes results significantly. Hence, even though the strain
penetration effect is corrected for based on the same curvature φb in both cases, the term
that is subtracted from the plastic hinge length Lp varies.
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d Location of the center of rotation in the plastic hinge

Another assumption with a potential influence on the experimental plastic hinge length
estimate is the location of the center of rotation. As mentioned, this far the center of rotation
was assumed to be at the base of the structures, which complies to Equations (2.32) and
(2.38) for the flexural response. However, one can also assume that the center of rotation
is located at the center of the plastic hinge. This assumption conforms to the solution
obtained by integration of the idealized curvature profile shown in Figure 2.1, which is also
employed in Equation (2.41). With this assumption, the plastic flexural displacement and
the corresponding plastic hinge length L′

p = Lp − Lsp are computed as follows:

Δp,fl = φpL
′
p

(
Ls −

L′
p

2

)
(3.2a)

→ L′
p = Ls −

√
L2
s −

2Δp,fl

φp
(3.2b)

Strictly speaking, this is only valid if the plastic hinge length and hence also the plastic
flexural top displacement do not contain a component due to strain penetration. To obtain a
flexural top displacement that reflects only the deformation in the pier itself, the measured
base curvature has been substituted for the linearly extrapolated base curvature prior to the
integration. This replacement of curvatures has already been done in the previous section.
The analytical first yield flexural displacement and the experimental total flexural displace-
ment have been used again. Figure 3.10b shows that, compared to Figure 3.10a, shifting
the center of rotation to midheight of the plastic hinge leads to a further reduction of the
plastic hinge lengths by about 5%. The reduction can easily be explained by examining the
plastic top displacement and Equation (2.12). The plastic displacement is either calculated
by multiplying the curvature with Ls or Ls−0.5Lp, hence the ratio between the top displace-
ments obtained with the different locations of the center of rotation is (Ls− 0.5Lp)/Ls. With
a plastic hinge length of Lp = 400mm ratios of ∼ 95% and thus 5% difference between the
top displacements are obtained for the four examined test units with continuous reinforce-
ment. Therefore, if the top displacement is given and the plastic hinge length is derived
from it, the difference in the obtained plastic hinge length must also be approximately 5%.

3.3.3 Summary and comparison of plastic hinge lengths

The equations presented in Section 2.2, have been used to predict the plastic hinge lengths
of test units VK1-VK7. The material properties that are necessary for the determination of
the plastic hinge length are provided in [1, 3] and repeated in Table 3.1. For the steel,
yielding stresses of fy = 521MPa were used in all cases and ultimate steel stresses of
fu = 630MPa (VK1-VK3) and fu = 609MPa (VK4-VK7), respectively. The bar diameter
was always dbl = 14mm.

Table 3.2 summarizes the results for all test units. It shows the mean values and standard
deviation of the plastic hinge lengths that were back-calculated from the peak flexural dis-
placements of cycles with displacement ductilities μΔ ≥ 1.0 according to the procedures
in the preceding paragraphs. The equations that were used for the predictions are re-
peated below the table for convenience. Furthermore, it is indicated whether a component
accounting for strain penetration is included in Lp or whether the value represents a net
plastic hinge length without this component L′

p and where the center of rotation is assumed
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(a) Experimental plastic hinge lengths determined
from curvature profiles corrected for strain pen-
etration.
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(b) Experimental plastic hinge lengths according to
Eq. (3.2) with center of rotation at center of
hinge.

Figure 3.10: Influence of the method for the correction of strain penetration and of the assumed location of
the center of rotation.

to be located (at midheight of the plastic hinge or at its base). When the experimental first
yield displacement Δ′

y,exp is exchanged for the analytical Δ′
y,a, the strain penetration com-

ponent is not affected, hence the plastic hinge length Lp(Δ
′
y,a) can be obtained by adding

Lsp (row 2 of Table 3.2) to L′
p(Δ

′
y,a) (row 4 of Table 3.2). For comparison with the plastic

hinge lengths calculated from the top displacement, the plastic hinge lengths determined
from the spread of plasticity, shown in Figure 3.5, are included in row 6 of Table 3.2.

3.3.4 Discussion of plastic hinge lengths

Two main conclusions can be drawn from the experimental results shown in the previous
section: The experimentally determined plastic hinge length is very sensitive to some of the
assumptions made for backcalculating the length and it does not necessarily appear to be
constant but rather dependent on ductility.

Regarding the sensitivity to certain assumptions, Section 3.3.2 has shown that especially
the determination of the first yield displacement and the approach to correct for the in-
fluence of strain penetration influence the results. In the original approach, the first yield
displacement was taken as the mean flexural displacement in positive and negative loading
direction corresponding to the analytical first yield force. However, in plastic hinge modeling
one obviously has to add the predicted plastic flexural deformation to an analytical estimate
of the first yield displacement. Hence, the plastic hinge length was also backcalculated
from plastic flexural deformations that were determined based on an analytical first yield
deformation. This method yielded, in contrast to the original method, a more constant esti-
mate of the plastic hinge length. This was mainly due to an overestimation of the first yield
displacement which influences in particular the plastic hinge length at low displacement
ductilities. Besides the first yield displacement, the method that was chosen to correct for
the influence of strain penetration significantly influenced the results. As the rotation due to
anchorage slip, which essentially corresponds to the rotation due to strain penetration, was
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Table 3.2: Summary of experimentally determined and predicted plastic hinge lengths Lp, strain penetration
lengths Lsp and net plastic hinge lengths L′

p = Lp − Lsp. All lengths are given in mm as mean
value with standard deviation.

Test unit VK1 VK2 VK3 VK4 VK5 VK6 VK7

Experimental

Lp (Δ′
y,exp) 540±260 491±181 483±138 478±132

Lsp 51±47 77±54 73±66 140±80

L′
p (Δ′

y,exp) 489±218 414±132 410±72 338±52

L′
p (Δ′

y,a) 303±22 337±67 386±54 325±42

L′
p (Δ′

y,a,φ∗) 286±41 263±46 368±32 266±37

L′
p,mh (Δ′

y,a,φ∗) 300±45 275±50 385±35 278±40

L′
p = 0.5Lpr 317±36 275±31 386±29 319±42

Predicted

Eq. (2.2) = Lp 599 599 599 572 612 612 572

Eq. (2.9) = L′
p 419 414 412 412 467 479 405

Eq. (2.6b) = L′
p,mh 520 520 520 520 600 600 520

Eq. (2.7) = Lp,mh 538 546 548 546 585 570 556

Eq. (2.10)= L′
p,mh 535 530 529 530 610 621 509

Δ′
y,a and Δ′

y,exp indicate whether the analytical or experimental first yield displacement has been used.

φ∗ indicates that the measured base curvature has been replaced with the extrapolated base curvature prior to
integrating the curvature profile and thus determining Δfl.

Index mh indicates that the center of rotation was assumed at the center of the hinge, whereas in all other cases
it was assumed at the base of the hinge.

Eq. (2.2) [7] Lp = kLs + 0.2h+ Lsp

Eq. (2.9) [4] Lp = (0.2h+ 0.05Ls)
(
1− 1.5 P

Agfc

)
≤ 0.8h

Eq. (2.6b) [6] Lp = 0.2h
(
1 + 1

3 min
(
9, Ls

h

))
Eq. (2.7) [24] Lp = Ls

30 + 0.2h+ 0.11
dblfy√

fc

Eq. (2.10) [27] Lp = 0.27h
(
1− P

Agfc

)(
1− fyv�v

fc

) (
Ls

h

)0.45

not measured directly during the experiments, the strain penetration had to be corrected for
in an approximate manner. As outlined in Section c this does again influence primarily the
plastic hinge lengths that are obtained for low ductility levels.

Due to the approximate correction for the strain penetration effect and because all predic-
tions must be based on an analytical first yield displacement, it seems reasonable to use
mainly Lp(Δ

′
y,a) and Lp,mh(Δ

′
y,a) for comparison with the predicted plastic hinge lengths.

Regarding the estimate of the first yield displacement, one might of course argue that the
prediction of Δ′

y needs to be improved instead of correcting for an overestimation of the
displacement with an underestimation of the plastic hinge length at low ductilities. How-
ever, one needs to keep in mind that the two main causes for the error in the first yield
displacement seem to be the nonlinear curvature profile and possibly the neglect of tension
stiffening in the moment-curvature analysis. However, the curvature profiles of the different
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test units are not uniform, as evident in Figure 3.9, and tension stiffening can only be incor-
porated in the moment-curvature analysis with certain approximations. Hence, accounting
for these effects would complicate the determination of the first yield displacement, but
not improve it significantly. For this reason, the experimental plastic hinge lengths that are
based on the analytical estimate of the first yield displacement are used for comparison
here. As Table 3.2 shows, the predictions generally overestimate the plastic hinge lengths.
The prediction according to Equation (2.9) yields the estimate that is closest to the exper-
imental ones. In the following sections, the plastic hinge lengths will be further evaluated
based on the predictions of the displacements that are obtained with them.

3.4 Strain penetration influence

3.4.1 Experimentally determined strain penetration influence

As the first part of the examined test series showed that this issue needed to be investigated
[1], the anchorage slip was directly measured with an optical system and targets that were
glued to some reinforcement bars right above the foundation in the second part of the
series (i.e. VK6 and VK7, [3]). To measure the strain of the same bars, these bars were
also instrumented with strain gages. Figure 3.11a shows the experimental data for load
steps that were reached prior to the attainment of the first yield load. For comparison, the
predictions according to the approaches introduced in Section 2.3 are included in the graph
as well. As evident from Figure 3.11a, the experimental data follows a clear trend and from
extrapolation of the slip to the yield strain a slip value between those according to [31] and
[33] would result. These two predictions are made only for the yield strain and were linearly
connected to zero in the plot.
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Figure 3.11: Anchorage slip against strain measured during the experiment compared to predictions (a)
and experimentally determined rotation due to strain penetration against extrapolated base
curvature compared to predictions (b).
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With a slip of δs = 0.35mm at yield and the neutral axis location according to the respec-
tive moment-curvature analysis a rotation due to strain penetration θsp of 0.33 · 10−3 and
0.35 · 10−3 is predicted for VK6 and VK7, respectively. With this rotation top displacements
of Δsp = 1.5mm (VK6) and Δsp = 1.2mm (VK7), corresponding to around 10% of the flex-
ural deformation at first yield, are obtained.

When the load steps in the inelastic range were reached, the measurement targets had
usually fallen off because the concrete started spalling and the strain gages were no longer
working either [3]. Hence, the slip corresponding to the strain could no longer be experi-
mentally determined. Therefore, another way of investigating the strain penetration effects
and visualizing the data had to be chosen. Figure 3.11b shows the rotation due to strain
penetration θsp against the extrapolated base curvature φb. The experimental base curva-
ture was determined by linear extrapolation of the curvature profile as shown in Figure 3.4.
The rotation due to strain penetration corresponds to the difference between the measured
rotation and the rotation resulting from this extrapolated base curvature. Predicted rota-
tions were obtained from the slip estimates determined with the various equations and the
neutral axis location, strains and curvatures from the moment-curvature analysis of VK7. If
the strain penetration length was constant, a linear prediction of the rotation due to strain
penetration with gradient Lsp = θsp/φb would result. This is the case for the prediction ac-
cording to [7], whereas the remaining predictions as well as the experimental data in Figure
3.11b do not indicate such a linear relationship.

3.4.2 Discussion of strain penetration estimates

With regard to the estimate of the reinforcement slip in the elastic range, Figure 3.11a
shows that the differences in the examined approaches are relatively small and all equa-
tions yield satisfying estimates. The best prediction of the slip is here obtained with Equa-
tion (2.19) [33], which exactly matches the strain-slip relationship that was obtained from
the experimental data.

Concerning the slip and the corresponding rotation in the inelastic range, Figure 3.11b
shows that it is difficult to draw conclusions from the available experimental data. As al-
ready obvious in Figure 3.7, assuming a constant strain penetration length seems to over-
estimate the strain penetration effect in the inelastic range. However, which approach is
most suitable to determine the actual effect is hard to tell as the experimental data does
not show a clear trend. This might be due to the way the experimental base curvature is
determined. Linear extrapolation can be difficult, depending on how well the crack pattern
is developed (see load step μΔ=2.0 of VK6 in Figure 3.4, for instance), and it is also ques-
tionable to which extend the linear approximation is usable. As evident in Figure 3.4 it is
certainly a reasonable assumption, but Figure 3.9 indicates that the curvature profile is in
fact slightly curved. This curved shape is also visible at load steps in the inelastic range.
Even though this appears to be a minor variation in the curvature profile, the extrapolated
base curvature and the results obtained with it could be notably affected due to the high
gradient of the inelastic curvatures.
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3.5 Moment curvature analysis

The results of moment-curvature (M-φ) analyses made with varying material models and
softwares were compared with the experimentally obtained M-φ relationship. For the latter,
the readings from the LVDTs just above the basecrack, measuring the elongation between
50-200 mm height, were used. Eventually, fiber based calculations made with MATLAB [57]
were employed for all further calculations. The concrete was modeled according to the
confined concrete model proposed by [5], see Figure 3.12b:

fcc = fc

(
−1.254 + 2.254

√
1 +

7.94f ′
l

fc
− 2

f ′
l

fc

)
(3.3a)

εcc = εc

(
1 + 5

(
fcc
fc

− 1

))
(3.3b)

where fcc and εcc are the confined concrete strength and strain corresponding to peak
stress, respectively. f ′

l is the lateral confining pressure exerted by the stirrups and is cal-
culated as f ′

l,x = kcon�xfyv and f ′
l,y = kcon�yfyv in each direction with the confinement

effectiveness factor kcon according to Equation (2.29). This constitutive relationship for
the concrete was chosen over the modified Popovics model [58, 59], because it provided
better post-peak responses than the latter, with which the moment capacity degraded too
fast. All concrete inside the centerline of the stirrups was assumed to be confined. For
the unconfined cover concrete a spalling strain of εc = 0.004 was assumed. Since a linear
degradation of stress between twice the strain at peak stress (here εc0 = 0.002) and the
spalling strain is recommended, the stress was assumed to drop to fc = 0 at εc = 0.004,
see Figure 3.12b. No tension stiffening is considered, because as stated by [31], the ten-
sion stiffening effect is degrading due to the deterioration of bond under cyclic loading and
can therefore generally be neglected in cyclic analysis. The tensile strength of concrete
was considered in the analysis in order to capture the first kink in the M-φ response that
was also observed in the experiments.

A bilinear steel constitutive law with strain-hardening was chosen over the measured stress-
strain relationship for the determination of the plastic hinge lengths as well as for the
moment-curvature analysis because of the cyclic loading. Depending on the loading his-
tory, the envelope under cyclic loading might be very different from that under monotonic
loading. Test data indicates that when steel is subjected to large load reversals the yield
plateau disappears due to the Bauschinger effect and the ultimate stress might increase
due to isotropic strain hardening. To account for these effects, [60] introduced a strain
and stress shift in their cyclic steel model. Similar observations were made in [61, 62].
Even though the exact steel strain-history during the tests remains unknown, it is deemed
reasonable to assume that the yield plateau disappears because the steel strains are ex-
pected to alternate between tensile and at least small compressive strains. A stress shift is
not included since this is strongly dependent on the load history and reported to be small
[60, 62]. One can note, however, that due to the rather small fu/fy ratio, the choice of the
steel constitutive relationship has merely a moderate influence on the results.

All material properties not explicitly mentioned herein were taken from [1, 3]. A normal force
of P = 1350 kN was considered in the M-φ analysis of all test units with aspect ratios of
Ls/h = 2.2 and P = 1365 kN in the analysis of those with Ls/h = 3.0. The material models
as well as the predicted and experimentally determined moment-curvature relationships are
shown in Figure 3.12. The experimental moment-curvature relationships were obtained by
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Figure 3.12: Experimental and analytical moment-curvature relationships and constitutive relationships
used for the analysis.

averaging the readings of the LVDTs located 50-200 mm above the base in positive and
negative loading direction. Only the data of the test units with continuous reinforcement
is included here, as the experimental data of the test units with splice is influenced by the
splice and hence not apt for comparison with the analysis.

As evident in the figure, the moment-curvature response is captured well with the predic-
tions. The post peak response is predicted well until a strong degradation sets in for VK1
and VK3. This degradation was due to the onset of shear degradation in the experiment
and thus due to a mechanism that cannot be captured with section analysis. The max-
imum moment of VK6 is slightly underestimated but the post-peak response is captured
well, whereas the post-peak moment capacity of VK7 is slightly underestimated. Before
the cracks developed in the instrumented section of the test unit, the stiffness is obviously
underestimated by the analysis. However, despite these small deviations, one can con-
clude that the analyses predict the responses well and should thus provide a good basis
for the plastic hinge modeling approach.

3.6 Flexural response

3.6.1 Summary of approaches

The flexural deformation of test units VK1-VK7 was modeled according to the approaches
introduced in Chapter 2 using the plastic hinge length predictions provided in the bottom
part of Table 3.2. Table 3.3 gives an overview over the employed approaches for deter-
mining the flexural displacement and the plastic hinge length used in relation with each of
them. Note that Equations (2.39) and (2.35) are included here without the components that
account for shear deformations, as only the flexural deformations are of interest at the mo-
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Table 3.3: Overview over approaches to determine the flexural displacement and related plastic hinge
lengths. The last column shows the legend entry that is used for the corresponding approach
in the following figures.

Reference Equations for flexural deformation and plastic hinge length. Legend
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ment. The component which accounts for an increase of deformation due to shear cracking
was considered nevertheless, as it was interpreted as a tension shift component and not
as shear deformation component. An approach using the plastic hinge length for capacity
designed walls according to [27] is not included, but it should yield similar estimates as that
labeled [BF10] as the plastic hinge lengths are similar (see Table 3.2). The last equation
(EC8-3 Equation (2.40)) does not utilize the plastic hinge length and is repeated here with-
out the terms that are not relevant for the investigated piers for ease of reading. That means
the terms that equal one, i.e. the ratio of the mechanical reinforcement contents ω′/ω and
the term accounting for diagonal reinforcement, are omitted here.

3.6.2 Limit strains and curvatures

The ultimate curvature can either be calculated according to Equation (2.31) or it can be
defined by the strain limits according to Equations (2.26) to (2.30). Table 3.4 provides on
overview over these strain limits and Table 3.5 summarizes the curvature limits that result
from these strain limits as well as the directly calculated curvature limits.

To check whether the predictions agree well with the experiments on a global and a local
level, the predicted and measured deformations corresponding to certain force and strain
levels were compared. First, the predicted flexural deformation at first yield force was com-
pared to the experimentally determined flexural deformation at first yield force. Figure 3.13a
shows flexural drifts that were predicted at first yield force against the experimental drifts.
In case of the first yield values, the mean flexural first yield displacement, determined from
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Table 3.4: Steel and concrete strain limits suggested for the use in plastic hinge analysis. Only one value is
given if the strains vary only slightly due to different fc.

Test unit VK1-VK3 VK4-VK6 VK7

Eq. (2.26) εcu = 0.004 + 1.4
�vfyvεsu

fcc
∼ 5.3� ∼ 5.1� 7.8�

Eq. (2.27) εsu = 0.6εsu 75.6� 66.0� 66.0�
Eq. (2.28) εcu = 0.0035 +

(
1

xc,con

) 3
2

+
0.4kcon�vfyv

fcc
4.8� ∼ 4.7� 8.6�

Eq. (2.30) εsu = 3
8εsu = 0.375εsu 47.3� 41.3� 41.3�

Table 3.5: Curvature limits suggested by [35] compared to the curvatures corresponding to the strain limits
in Table 3.4.

Test unit VK1 VK2 VK3 VK4 VK5 VK6 VK7

Curvature m−1 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3

Eq. (2.31) 52.8 51.7 51.3 45.0 49.4 51.7 41.8

Eq. (2.26) & (2.27) 21.0 19.2 16.0 15.6 15.3 17.6 22.1

Eq. (2.28) & (2.30) 19.3 17.7 14.6 14.8 14.5 16.3 24.4

the first cycle in positive and negative loading direction, was used as experimental value.
As the first yield displacement is defined by the corresponding lateral force, the displace-
ments of all test units can be used for comparison. The shapes of the markers in Figure
3.13 correspond to the respective test unit and the colors indicate which approach for deter-
mining the flexural displacement has been used. The approaches to calculate the flexural
deformations have been named as shown in Table 3.3.

Second, the flexural drift corresponding to the ultimate concrete strain εcu according to
Equation (2.28) was compared. Only the experimental flexural displacement in positive
loading direction was used for comparison. The strain was compared to the strain obtained
from the second LVDT above the base, i.e. the one at 50-200 mm height. Only the positive
loading direction was chosen because compressive strains in positive and negative loading
direction showed considerable differences during the same cycle. As the positive loading
corresponds to the first loading direction, the strain measured in this direction was deemed
an appropriate comparison, because it might be slightly less influenced by previously ap-
plied tensile strains. Only test units with continuous reinforcement are included in the latter
plot because the strains measured at the bottom of the pier are affected by the spliced
reinforcement.

The strain limit that is predicted for VK7 (8.6�) is considerably higher than the strain limits of
the other test units. Furthermore, the concrete to which the LVDTs are attached is already
considerably damaged at this point. Thus, a concrete strain limit εc = 0.004 was chosen for
comparison in the plot. The limit strains of all other test units are within the range that was
well measurable by the LVDTs and hence included in the plots. As the prediction of the
displacement according to Equation (2.36) [BF10] can only be made corresponding to the
higher limit strain, it is not included for VK7. The drift capacity according to EC8-3 Equation
(2.40) [24] is not included in Figure 3.13 as it could only be used for the ultimate drift but is
not directly linked to a strain limit.

Comparison between the experimental and analytical first yield drift shows that this drift is
generally slightly overestimated. This can be explained with an overestimation of the cur-
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Figure 3.13: Comparison of predicted and measured flexural drifts. The shape of the symbols corresponds
to the test unit and its color to the applied model.

vature at the first yield moment, see Figure 3.12, as well as with the concave instead of
linear curvature profile at first yield, see Figure 3.9. Nevertheless, the drift is predicted well,
except for VK1 & VK2, if the approaches named [7] and [4] are used. Considering strain
penetration at this stage leads to a slightly larger overestimation of the drift than not con-
sidering it, even though the experimental data is not corrected for this effect. Approaches
[BF10] and “EC8-3”, which include an influence due to shear cracking, significantly overes-
timate the flexural drift of all test units with Ls/h = 2.2 at first yield, for which shear cracking
is predicted. However, also the flexural drift of VK5 and VK6, which does not include this
component as shear cracking is expected only for forces that are higher than F ′

y, is larger
than measured. As the equations of both approaches differ only very little in the term ac-
counting for the reinforcement slip, the predictions obtained with these two approaches are
almost equal.

Similar observations are made for the drift at εc,u with relatively large overestimation of drift
according to [6] ([BF10]) and [24] (EC8-3). With the approach according to [7], the drift pre-
diction of VK6 and VK7 is satisfactory, whereas a larger overestimation of drift is obtained
for VK1 and VK3. The best estimate on average is obtained with the approach labeled [4].
As the same moment curvature analysis is used for all predictions, this good correspon-
dence of results indicates that the plastic hinge estimate according to [4] yields the best
results in combination with the refined approach to determine the flexural deformations ac-
cording to [7]. Concerning the limits themselves one can furthermore note that the strain
limits result in comparable curvature limits, whereas the limit curvatures according to [35]
are about three times as high, see Table 3.5. This is most likely due to the fact that these
curvatures were determined from a numerical model of walls with confined boundaries.
This type of walls is expected to sustain much higher curvatures than piers with detailing
deficiencies that are considered here. Besides, this curvature limit is dependent only on
the steel strain, whereas in the other cases as well as in the experiments themselves, the
limit strain and thus the failure of concrete was governing.
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3.6.3 Force-flexural deformation response

In Figure 3.14, the predictions of the flexural deformations of two test units are compared
with the experimental data. One is the prediction of the force-displacement relationship of
VK1, which is the test unit with the lower longitudinal reinforcement ratio and continuous
reinforcement. Yield and “ultimate” deformation were overestimated with all approaches
for this test unit, see Figure 3.13. However, in Figure 3.14 one can see that especially
with the comparatively short plastic hinge length according to [4] and no consideration of
strain penetration, the estimate of the force-deformation relationship is satisfactory. In the
two continuous predictions using the refined approach according to Equation (2.38), the
displacements corresponding to the limit curvatures summarized in Table 3.5 are marked
with dots. These graphs show that the strain limits correspond to a point in the response
that is attained right after peak load and hence provide a conservative displacement limit.
The curvature limit for capacity designed walls, on the other hand, results in displacement
capacities that are significantly larger than the measured ones. With the approach [BF10]
the deformation capacity is overestimated as well. For more clarity in the plot, the prediction
named “EC8-3” has not been plotted, but as Figure 3.13 shows, it yields approximately the
same deformation as [PCK07] in this case. The drift capacity for the “near collapse” state
according to EC8-3 is included in this plot (“EC8-3 Eq. 2.40”), but overestimates the drift
capacity. It should be noted though, according to [24], the predicted ultimate drift value
needs to be divided by 1.5 for “primary seismic elements”. However, this is not necessary
for “secondary” elements and was thus interpreted as safety factor. Therefore, this factor
was disregarded for the predictions displayed in Figure 3.14.

Test unit VK7 is shown because both the first yield displacement and the displacement at
which εc = 0.004 concrete strain was reached were predicted well. In Figure 3.14 one can
notice a difference between the force-displacement relation measured in positive and nega-
tive loading direction, which is due to a better confinement of the compression zone in pos-
itive loading direction. In negative direction, the confinement was weakened because the
locks of all the stirrups were placed at the side of the pier which was the compression zone
in that loading direction. While the force in positive loading direction is underestimated,
displacement predictions are partially satisfactory. The force-displacement prediction that
is be obtained with the prediction labeled “EC8-3” in Table 3.3 is not included for clarity, but
Figure 3.13 shows that this approach predicts a larger deformation capacity than [PCK07].
The drift capacity according to [24] “EC8-3 Eq. 2.40” does again yield unconservative pre-
dictions of the deformation capacity if the “safety factor” of 1.5 is neglected.

3.6.4 Discussion of flexural deformation results

Generally, Figure 3.13 shows that all approaches tend to overestimate the flexural deforma-
tion corresponding to a certain concrete strain at the base of the pier at least slightly. With
regard to the first yield displacement, especially the approaches that consider an increase
in deformation due to inclined cracking, i.e. Equation (2.35) [31] and Equation (2.39) (EC8-
3 [24]), overestimate the deformation significantly. Very good agreement is obtained with
the other approaches except for the two test units with the lowest longitudinal reinforcement
ratio. For these test units, the first yield displacements was overestimated by 36% to 93%.

Regarding the displacements at which the concrete strain according to Equation (2.28)
was reached, there are considerable differences in the approaches as well. Also for this
ultimate limit state, Equation (2.36) [6] predicts the largest displacement. The prediction
with the plastic hinge length according to Equation (2.9) [4] agrees best with the measured
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Figure 3.14: Prediction of load - flexural deformation relationships and measured values.

displacements on average. This plastic hinge length is the shortest one among all the
predictions and contains no strain penetration influence. Besides, it considers a decreasing
effect due to the applied axial load.

Figure 3.14 shows that even though the drift corresponding to a certain strain might be
overestimated (compare Figure 3.13), the overall shape of the response is still captured
relatively well with the refined predictions. The only prediction with a larger deviation is
that according to [31] because of the previously mentioned consideration for inclined crack-
ing (term φ′

ykvzLs/3 in Equation (2.35)). Figure 3.14 also indicates the displacements at
which, according to the predictions, the limit curvatures listed in Table 3.5 are reached. As
mentioned before, the limit curvature according to Equation (2.31) results in a large over-
estimation of the deformation capacity regardless of the plastic hinge length. This is due
to the fact that this curvature limit was derived for capacity designed walls and depends
only on the steel strain. The other two curvature limits, on the contrary, are defined by the
concrete limit strain, which was always reached first, according to the analyses. This is in
line with the experiments, where degradation of the shear capacity was always triggered by
damage of the concrete in compression. One can note, though, that the displacement ca-
pacities predicted with these strain limits are rather conservative and correspond to a state
that is reached shortly after the peak load. The displacement capacity that corresponds to
the onset of the stronger degradation could not be captured with any of the existing lim-
its. However, this degradation is also related to a changing mechanism for all test units
that eventually failed in shear which cannot be captured with the plastic hinge modeling
approach. Based on the remaining test unit VK7 that failed in flexural compression, no
improved limit strain could be established. A model which is capable of predicting the onset
of shear degradation will be discussed in Chapter 5.
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3.7 Shear response

3.7.1 Introductory remarks

In this section, the shear deformation is investigated in more detail. First, the experimental
data is presented and compared to the predictions according to the models reviewed in
Section 2.6. Based on the evaluation of this comparison, modifications of the existing
models are examined. In particular the prediction of the crack angle and the inclusion of
a correction factor accounting for the shear resistance are investigated to this end. Finally,
based on a different evaluation of the experimental data, an alternative approach to relate
the shear deformation to the axial elongation is developed.

3.7.2 Experimental data

To compare the predictions with the experimental data, flexural and shear deformations
were calculated from the Demec or optical measurement data of each test unit (see Figure
3.2b for a drawing of the measurement grid). The deformation components at the top of
element i were calculated from the outer columns of the measurement grid according to
Equation (3.4) and Figure 3.15, with b = 1350mm and h = 150mm. The overall measure-
ment grid was 9× 150mm = 1350 mm wide in each case and between 2550 and 3600 mm
high, depending on the height of the pier. No correction for curvature was made as it is
assumed that the curvatures are constant over the height of 150 mm, for which the shear
deformations are calculated.

b
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ss
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Δfl,i = Δfl,i−1 + θi−1h+
φih
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2
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1,i −D2
2,i

4b
(3.4b)

Figure 3.15: Calculation of shear and flexural deformation for an element defined by four measurement
nodes.

In Figure 3.16 the ratio of shear to flexural deformations of test units VK1-VK7, calculated
according to the procedure outlined above, is plotted against the imposed displacement
ductility. The shear deformations include the sliding deformation and the flexural deforma-
tions include the deformation due to strain penetration. In the figure, the average ratios
of shear to flexural displacements from the first cycles in positive and negative loading di-
rection are displayed. The figure shows that the ratios are approximately constant for the
more slender test units VK5 & VK6 as well as for VK7, which had the highest transverse
reinforcement ratio, from μΔ≈ 1.2 on. These test units were the most flexure-controlled
out if this test series and the observation of approximately constant Δs/Δfl is in line with
the observations made by other researchers (e.g. [54, 56]). The ratios of the more shear
critical test units deviate from this constant trend. While VK3 appears to have reached a
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Figure 3.16: Experimentally determined average shear to flexural deformation ratios as computed from op-
tical measurements at positive and negative first loading cycles against displacement ductility.

constant value at the relatively high ratio of Δs/Δfl >∼ 0.30 at μΔ≈ 1.4, the ratio of VK1
decreases after the peak ratio has been reached at μΔ≈ 2.0.

The Δs/Δfl ratio of the test units considered here are not necessarily constant, which
appears to be contrary to what has been observed for flexure controlled walls. However,
one has to keep in mind that these flexure controlled walls have a much more pronounced
plateau and reach higher ductility, whereas the degradation sets in for the walls investigated
here soon after the attainment of the maximum load. One can also note that, the more
flexure-controlled a wall is, the more it has a constant ratio: the Δs/Δfl ratio of the slender
test units VK5 and VK6 is approximately constant while there is a strong increase in shear
deformation up to μΔ ≈ 1.4 for the shear critical test units VK3 and VK4.

One important aspect to keep in mind when evaluating the data is the method with which
the shear deformations are determined. As outlined above, the Δs/Δfl ratios are computed
from the nodal displacements of a rectangular grid of measurement targets. Computing the
deformation components this way is considered accurate due to the relatively fine measure-
ment grid. The accuracy of the deformation components is confirmed by a good agreement
between the sum of the deformation components and the measured total top displacement.
The average ratio of this sum of deformation components to the total top displacement is
0.987 with a standard deviation of 3.8% in the inelastic range.

However, for comparison with the data according to the measurements taken along the rect-
angular grid, the shear deformation can also be determined from the readings of the LVDT
chains along the sides in an indirect manner. Only the flexural deformation can directly be
determined by double integration of the curvatures computed with the LVDTs. The shear
deformation can then be computed as the difference between the flexural deformation and
the top displacement. Hence, it may be regarded as shear deformation including an error
component due to inaccuracies in the measurements and approximations underlying the
calculations, for instance. However, this error component should be negligibly small.
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Figure 3.17: Experimentally determined average shear to flexural deformation ratios: directly and indirectly
determined.

Figure 3.17 shows the average Δs/Δfl ratios obtained with both the direct and the indirect
method in the inelastic range. For clarity, only the ratios of the test units with continuous
reinforcement are shown here. As the indirect ratios were calculated from the average flex-
ural displacement, the average shown here is slightly different to the one shown previously.
Here, Δs/Δfl is computed from average displacements in positive and negative loading
direction, whereas previously Δs/Δfl was computed for both loading directions and then
averaged. However, the differences are minimal and the data presented in this figure is
only used to illustrate the differences in the results. As evident in Figure 3.17 there are
some differences in the directly and indirectly determined Δs/Δfl ratios of VK3 and VK6,
which stem from differences in the flexural deformation. However, while the differences in
the ratios seem significant (∼ 20− 30%), the differences in the absolute shear deformation
values are rather small (∼ 1 − 2mm). This comparison of data thus illustrates that even
small differences in the measurements can, depending on the type of evaluated data that
is displayed, cause some variation in the results. This should be kept in mind when the
data is interpreted. In the following, the directly determined shear deformation is used due
to the previously mentioned quality of the data as evident in the good agreement between
the sum of components and the top displacement.

3.7.3 Summary of approaches

Three existing approaches to include the shear deformation in plastic hinge modeling have
been presented in Sections 2.6.1 to 2.6.3. One of them utilizes the crack angle and cen-
troidal axial strain in the plastic hinge to estimate the shear distortion and, based on that, the
shear deformation [8]. In the second approach, shear deformations are related to flexural
deformations based on the kinematics at a shear crack [28]. The third approach estimates
the deformation based on the shear stiffness of a cracked structure, which is estimated us-
ing a truss model [7]. Table 3.6 summarizes the mentioned approaches and the predicted
shear to flexural deformation ratios for each test unit at peak load compared to the exper-
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Table 3.6: Summary of models to estimate shear to flexural deformation ratios Δs/Δfl.

Test unit VK1 VK2 VK3 VK4 VK5 VK6 VK7

Mean (Δs/Δfl)exp 0.19 0.21 0.32 0.37 0.13 0.10 0.21

[8] Eq. (2.45) 0.23 0.24 0.23 0.21 0.13 0.16 0.23

[28] Eq. (2.46) 0.15 0.17 0.22 0.20 0.10 0.11 0.15

[7] Eq. (2.51) 0.89 0.94 1.32 1.34 0.36 0.24 0.58

Eq. (2.45) 1.5 εl
φ tan θ

1
Ls

Eq. (2.46)
(

V
Vn

+ V
Vwc

)
0.35 (1.6− 0.2θmax)

h
Ls

Eq. (2.51)
(
Δsh,1 +

(VN−Vc)
Ksh,cracked

)
/(φy

(Ls+Lsp)
2

3 )

imental values. The experimental ratios are the mean ratios at peak load in positive and
negative loading direction. For the test units with continuous reinforcement this means the
ratio at load step μΔ=3.0 was used. For the test units with splices load step μΔ=2.0 was
used instead. At this load step, measurements were still available for both loading direc-
tions, while the lap-splice had always started degrading at the negative loading to μΔ=3.0.
All predictions in Table 3.6 that utilize the crack angle were evaluated based on the mea-
sured crack angle. With Equation (2.51) very large shear to flexural deformation ratios were
predicted, as evident in Table 3.6. The large ratios stem from the large differences between
the nominal yield force and shear cracking force Vc. This difference leads to the prediction
of a large shear deformation at nominal yield and hence a high ratio of shear to flexural
deformations. Due to the considerable overestimation of the shear deformations this pre-
diction is not examined further. The remaining two models and the predictions obtained
with them are discussed in the following sections.

If a crack angle is necessary to evaluate the model, it was determined from pictures of the
test units taken when the crack pattern was fully developed. The crack angles in the upper
part of the piers was used, according to the suggestion made by [8]. Since it is necessary
for the assessment of bridge piers to estimate the crack angle beforehand, angles calcu-
lated from Equations (2.52), (2.53) and (2.47) are listed in Table 3.7 for comparison. The
measured values represent the angles of the parallel crack pattern at the top of the test
units, which also corresponds to the predictions according to (2.52) and (2.53). The predic-
tion according to (2.47) yields the angle of the steepest crack reaching to the base, which
also corresponds to the angle of the parallel crack pattern. Equation (2.53) was initially
evaluated for the axial strain corresponding to the maximum moment according to moment
curvature analysis and thus the largest possible axial strain at the base. This strain is out of
the range for which the equation was developed, however. Besides, it might not be consid-
ered to be the optimum choice for the strain with which a crack angle forming higher up the
pier is to be estimated. However, the question is which height might represent a good loca-
tion. As the model according to [8] was developed based on the observation that the shear
deformation primarily stems from the plastic region, which corresponds to roughly 2Lp, the
crack angle is also evaluated for the strain at 1 m ≈ 2Lp height. Forces, lever arms and cen-
troidal strains obtained from moment-curvature analysis were used to calculate the crack
angles. All angles were calculated using the strains and forces obtained from the moment-
curvature analysis corresponding to the predicted maximum moment at the base of the
pier. The measured angles were similarly determined from photos that were taken after the
peak load, which is close to the nominal yield load, had been reached. Only the concrete
compression force and the steel tension force were considered to compute the internal
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Table 3.7: Measured and calculated crack angles at or after peak force level.

Test unit VK1 VK2 VK3 VK4 VK5 VK6 VK7

Measured 45◦ 42◦ 40◦ 43◦ 48◦ 45◦ 39◦

[28] (2.47) 22◦ 23◦ 19◦ 19◦ 20◦ 19◦ 30◦

[39] (2.52) 60◦ 60◦ 54◦ 50◦ 60◦ 61◦ 52◦

[40] (2.53) εmax 79◦ 72◦ 61◦ 60◦ 60◦ 66◦ 57◦

[40] (2.53) ε(∼ 2Lp) 32◦ 31◦ 31◦ 31◦ 31◦ 31◦ 31◦

[9] (2.54) 30◦ 30◦ 27◦ 27◦ 27◦ 27◦ 34◦

[28] (2.47) arccos
(

1
z

√
2(T−Tyav)z

(Avfyv)/(s)+(fctb2dcr)/(1.4z)

)
[39] (2.52) arctan

(
z
V

(
fctb+

Asvfyv

s

))
< 90◦

[40] (2.53) (29◦ + 7000εl)
(
0.88 + sxe

2500

) ≤ 75◦

[9] (2.54) arctan 4

√
�v+kE�l�v

�l+kE�l�v

lever arm, because the other forces were considered to be negligibly small. To compute the
crack angle according to (2.54), only the reinforcement contents and the ratio of the elastic
moduli are necessary. The ratio of the latter has been set to Es/Ec = 200GPa/25GPa in all
cases.

3.7.4 Evaluation of shear deformation models

a Shear deformation based on axial strain

To estimate the Δs/Δfl ratios of the test units according to [8], the measured crack an-
gles and the strains from the moment-curvature analysis were used. Instead of keeping
a constant ratio of εl/φ for the entire ductility range, as originally suggested, the ratio was
always obtained from the curvature and axial strains from the M-φ analysis. The Δs/Δfl

ratio, that is in then known in relation to the curvature, was related to the displacement duc-
tility according to Equation (2.38) [7]. Figure 3.18a shows the average experimental ratios
from positive and negative loading direction against the imposed displacement ductility in
positive direction.

For comparison, the ratios estimated according to Equation (2.45) are also included in the
plot. Since the model was developed for the deformations in the inelastic range, the ratios
are plotted from displacement ductility μΔ= 1.0 onwards. For clarity, only the test units
with continuous reinforcement have been included in that plot. Figure 3.18b shows the
predicted and experimentally determined ratios at the peak load. As mentioned previously,
this corresponds to load step μΔ= 3.0 for test units with continuous reinforcement and
μΔ=2.0 for those with spliced reinforcement. This figure does not include the averaged
experimental ratios but those from positive and negative loading to give an idea of the
difference between the two loading directions.

With predicted instead of measured angles, the ratios shown in Figure 3.19 are obtained. If
the angles predicted for the strain at 1 m height are used instead of the measured crack an-
gles, the ratios increase about 66% (= tan 45◦/ tan 31◦) and are thus larger than measured,
see Figure 3.19a. The increase in the ratios is even larger with the crack angles according
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(b) Predicted against experimental
Δs/Δfl ratios at peak load.

Figure 3.18: Shear deformation according to Equation (2.45) [8].

to Equation (2.54). As Table 3.7 shows, these angles are smaller than the measured ones
and even smaller than those according to [40]. However, this is the only prediction that
yields some differences between the different test units and would thus lead to different
shear ratio predictions which corresponds to the experimental data. Comparison with the
photos of the test units shows that these angles correspond approximately to the steeper
part of the shear crack angles. Hence, they might be useful if the correction factor in Equa-
tion (2.45) is modified accordingly.
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for the prediction.

Figure 3.19: Shear deformation according to Equation (2.45) [8] using predicted angles.

110 September 2014



662 | Seismic Safety of Existing Bridges - Cyclic Inelastic Behaviour of Bridge Piers

b Shear deformation based on crack inclination

Predictions with Equation (2.46) were made using the measured crack angles listed in Table
3.7 and the web crushing strength was taken to be the compression strut capacity VRd,max

according to [11] 6.2.3 (3). To compute VRd,max the internal lever arm from the moment-
curvature analysis at maximum moment has been used. In the plastic range, the diagonal
tension capacity Vn was calculated with the factor kμ = 0.05 according to Equation (4.1).
Shear to flexural deformation ratios were computed for all first cycle peak load levels. In
Figure 3.20a the predicted Δs/Δfl ratios of the test units with continuous reinforcement are
plotted against the mean measured ones in the inelastic range. The ratios at the peak load
levels are again compared in positive and negative loading direction. Hence, there are two
data points for each test unit in Figure 3.20b.
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(b) Predicted against experimental
Δs/Δfl ratios at peak load step.

Figure 3.20: Shear deformation according to Equation (2.46) [28].

The shear deformations shown in Figure 3.20 have been computed using measured angles.
For comparison, the shear to flexural deformation ratios obtained with the predicted crack
angle according to Equation (2.47) are shown in Figure 3.21. As this angle is much steeper
than the measured ones, the predicted ratios exceed the experimentally determined ones.
To examine whether the basic assumptions of the model apply to the investigated test
units, the shear and flexural deformations in between the two cracks where determined
from the measurement grid. In Figure 3.21b one can see that the flexural deformations
ratios originating from this region vary significantly between the different test units and that
only a part and not the total shear deformations stem from this region. Both deformation
components were determined from a rectangular grid whose width almost corresponds to
the wall length and whose height equals the distance between the two respective cracks.
That means the deformations were not determined along the cracks by explicitly taking into
account the kinematics suggested by [28].

3.7.5 Discussion of results

Generally, one can note that without correction factor, i.e. 1.5 and (V/Vwc + V/Vn), re-
spectively, the predictions according to Equation (2.45) and (2.46) yield relatively constant
shear to flexural deformation ratios for all piers at peak load level. Figure 3.18 shows this
for Equation (2.45) which utilizes a constant correction factor. The slightly curved shape of
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Figure 3.21: Shear to flexural deformation according to [28].

the Δs/Δfl predictions is the result of changing εl/φ ratios according to moment-curvature
analysis. As this model considers the ratios to be related to the shear span length Ls, the
ones predicted for the shorter piers are generally 36% higher (Ls,l/Ls,s = 4.5/3.3 = 1.36)
than those predicted for the longer piers. Further differences in the ratios stem from vary-
ing material properties, so that generally the ratios of the shorter piers lie between 21-24%,
whereas the ones of the longer piers lie between 13-16%. Without correction factor, the
predicted ratios would hence be around 15% and 10% for the piers with aspect ratio 2.2
and 3.0, respectively.

The figures show that the predicted ratios are similar to the measured ones, except for
the most shear critical piers VK3 & VK4 and the slender pier VK6. The average ratios of
the shear critical test units are underestimated by about 40% (VK3) to almost 80% (VK4).
One has to keep in mind, however, that, as evident in Figure 3.18b for VK3, there is also
some variation in the experimental ratios. The Δs/Δfl ratio of the test unit with the highest
aspect ratio, VK6, is overestimated by about 50%. Hence, based on the experimental
data considered here one may say that Equation (2.45) yields good estimates for walls
with intermediate aspect ratios (Ls/h < 3.0), but does neither capture well the response of
shear critical piers such as VK3 nor that of more slender piers such as VK6.

The dependence on the geometry is primarily accounted for by means of the correction
factor in the approach according to [28]. Without correction factor α, there are only slight
variations in the predicted ratios. Due to the strength dependent correction factor, larger
Δs/Δfl ratios are predicted for test units VK3 & VK4, which also had significantly higher
shear deformations. As evident in Figure 3.20a, the shape of the Δs/Δfl is well predicted
but the ratios are too low. The ratio of the more slender test unit VK6 on the other hand is
well predicted both with regard to the magnitude of the ratio and the shape of the curve.
Hence it appears that, especially for predicting good ratios for the shorter, more shear
critical piers, the correction factor plays an important role.

With regard to the crack angle predictions, one can see that very low angles are predicted
with Equation 2.47 and hence application of the original shear model according to [28],
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Figure 3.22: Shear to flexural deformation ratios at peak load level according to model by [8] with correction
factor according to [28] using measured crack angles (to the left) and the angle according to
Eq. 2.54 with adjusted correction factor to the right.

including this predicted angle, leads to an overestimation of the shear deformations. Also
the crack angle predicted for the strain at 1.0 m height corresponding to the maximum lateral
load and the one dependent on the reinforcement content are lower than predicted. On the
contrary, the rest of the predicted crack angles that are listed in Table 3.7 are larger than
the measured ones. As both of the investigated models to predict Δs/Δfl depend on the
crack angle, the crack angle predictions need improvement for application with the models
if the dependence on the crack angle is not removed.

3.7.6 Modifications of existing models

To use the models for the prediction of deformation, the dependency on measured quan-
tities, such as the crack angle and the shear resistance, must be replaced by predicted
ones. This may then require an adjustment of correction factors. As previously noted,
whether the trend was captured well depends partially on the correction factor, as this is
an easy way to capture the influence of e.g. increased shear deformation due to low trans-
verse reinforcement ratios. Hence, predictions of the shear to flexural deformation ratios
were first made with Equation (2.45) in which the correction factor 1.5 was substituted with
α of Equation (2.46). Compared to the predictions presented in Figures 3.18 and 3.20,
predictions with the modified equation, Figure 3.22, are slightly better. Furthermore, as
previously shown, the crack angle that depends on the reinforcement ratios predicts the
differences between the piers better. However, if this was used, the ratios were predicted
with a slight offset which necessitated the introduction of a correction factor again. Figure
3.22 shows the shear to flexure deformation ratios predicted with the modified crack angle
and correction factor. The shear to flexural deformation ratios in this plot have thus been
determined according to the following equation:

Δs

Δfl
= α0.75

εl
tan θφ

1

Ls
= 0.75α

εl

4

√
�v+kE�v�l

�l+kE�v�l
φ

1

Ls
with 1 ≤ α =

(
V

Vn
+

V

Vwc

)
≤ 2 (3.5)
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Figure 3.23: Shear to flexural deformation ratio according to modified prediction by [28].

Figure 3.22 shows that the Δs/Δfl ratios predicted with this formulation are on average well
predicted, but with a certain deviation. Also the shear deformation prediction according to
[28] has been modified with the crack angle prediction based on the reinforcement ratio.
With this angle, the equation becomes:

Δs

Δfl
= α0.35

(
1.6− 0.2 arctan 4

√
�v + kE�v�l
�l + kE�v�l

)
h

Ls
(3.6)

Figure 3.23 shows the predictions made with this equation and the correction factor evalu-
ated with the peak load according to moment-curvature analysis against the experimentally
determined ratios at peak load. As evident in the figure, these simple modifications add to
improved predictions of the Δs/Δfl ratios, compared to the initial prediction, shown previ-
ously.

As evident in Figures 3.22 and 3.23 none of the modified approaches is clearly superior
to the other but both modified equations yield approximately equally good results. Hence,
based on the data of the test units considered here, one may conclude that they may be
used interchangeably.

3.7.7 New approach based on axial elongation

a Distribution of shear strains

In Figure 3.24 the shear strain distribution of two of the test units is shown. The shear de-
formations in the plot were calculated from the measurement grid on the surface of the test
units as explained in Section 3.7.2. The strain corresponds hence to the shear deformation
per row of the measurement grid divided by the height of this row. One can see that there
is no clear concentration of shear deformations, but rather a constant or linear distribution
along the height. To better compare the deformations of the two presented test units, the
vertical axes of both graphs are plotted with the same limit, even though VK7 was shorter.
Similar trends as those shown here were observed for the other test units. There was a
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Figure 3.24: Shear strain distribution as computed from the optical measurement grid along the height of
two of the test units.

slight difference in whether the strain distribution appeared to be more linear and decreas-
ing towards the top of the test unit (VK1, VK6 and VK7, see also Figure 3.24) or almost
constant over the entire measurement grid (VK3, see Figure 3.27). In each case, the shear
strain was thus distributed over almost the entire cracked height.

b Deformation due to crack opening

To gain a better understanding of what types of deformation exactly are interpreted as shear
deformation applying the data evaluation method outlined in Section 3.7.2, the deformation
determined for an element i located at height Li in the pier is looked at with regard to its
relation to deformations along the cracks. As Figure 3.25 illustrates, there may be cracks
running through the entire element and hence crossing it at the top edge, as well as some
crossing at the left edge. As a simplification, the cracks are assumed linear in the following.
The dashed and dotted lines in the right part of Figure 3.25 then indicate the boundaries
for all cracks that cross the element i at the left and top edge, respectively.

In reality, there will be several cracks, but to examine the influence of the displacement
along the cracks on the deformation components, all cracks crossing one edge will be
merged into one crack in the following. Before severe degradation of the entire structure
commences, it is assumed that only crack opening due to rotation around the tip and lit-
tle sliding occurs (compare also Chapter 5). This rotation around the crack tip results in
the deformations shown in Figure 3.26. The cracks below element i, do only cause rigid
body rotation of the entire element and do hence not need to be considered. Pure lateral
elongation and constant curvature in an element do similarly not contribute to the shear
deformation. If the illustrated mechanism is valid, the shear deformation determined from
the experimental data should be a combination of both deformation modes shown in Figure
3.26.
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Figure 3.25: Cracked wall with element i at height Li and idealization of crack pattern.

Figure 3.26 shows that the element to the right is subjected to a horizontal elongation and
a rotation of the part above the crack. The bottom edge of the element to the left is also
elongated, but not the top edge, which is interpreted as shear deformation according to
the method chosen here for the evaluation of the deformation components. The directly
determined shear deformation was computed from the difference in the elongation of the
two diagonals D1 and D2, as outlined in Section 3.7.2. This procedure yields the following
shear deformation for an element with cracks crossing at the left edge:

D2
1 = (h+Δx3)

2 + h2
ei (3.7a)

D2
2 = h2 + h2

ei (3.7b)

Δs =
(h+Δx3)

2 + h2
ei − (h2 + h2

ei)

4h
(3.7c)

=
1

2
Δx3 +

Δ2
x3

4h
(3.7d)
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Figure 3.26: Deformation of element i due to rotation at cracks crossing the element at the left and top edge.
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Diagonal D2 is not elongated and does hence not need to be expressed in terms of the
nodal coordinates and displacements. Doing so would merely add a small error compo-
nent if linear kinematics are employed. The displacement of the upper right node can be
expressed as follows by using linear kinematics:

Δx3 = (Li + hei)θi0 (3.8)

This displacement can be inserted in Equation (3.7). If the quadratic term is neglected, as
its contribution to the displacement is small, the shear displacement is:

Δs,i =
1

2
(Li + hei) θi0 (3.9)

Following the same procedure, the shear displacement of the element displayed at the
right side of Figure 3.26, with cracks crossing at the top edge, can be derived. The shear
deformation due to elongation of the diagonals is:

D2
1 = (h+Δx3)

2
+ h2

ei (3.10a)

D2
2 = (h+Δx4)

2
+ h2

ei (3.10b)

Δs =
(h+Δx3)

2
+ h2

ei − [(h+Δx4)
2
+ h2

ei]

4h
(3.10c)

=
1

2
(Δx3 −Δx4) +

Δ2
x3 −Δ2

x4

4h
(3.10d)

Again, the quadratic terms Δ2
x will be neglected in the following, as their contribution to the

deformation is small. The nodal displacements, expressed by using linear kinematics, are:

Δx3 = (Li + hei)θi (3.11a)

Δx4 = Liθi (3.11b)

(3.11c)

These displacements are inserted in Equation (3.10). The shear displacement in function
of the rotation θi is:

Δs,i =
heiθi
2

(3.12)

The sum of the rotations of all cracks crossing the element at the left edge can be expressed
as a function of the axial strain εl(y):

θi0 =
Δli0

0.5h
=

1

0.5h

∫
li0

εl(y)dy =
1

0.5h

0.5(Li+hei)∫
0.5Li

εl(y)dy (3.13)
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The base length for integration of the strains li0 is illustrated in Figure 3.25 and the bound-
aries for integration can be obtained by looking at Figure 3.25. The sum of the rotation of
all cracks crossing the top edge of the element can similarly be expressed as:

θi =
1

0.5h

∫
li

εl(y)dy =
1

0.5h

0.5lcr∫
0.5(Li+hei)

εl(y)dy (3.14)

The equations presented in this section show, that this approach resembles the previously
presented approaches to determine the Δs/Δfl ratio. Similarly to the model according
to [20], the shear deformation is here related to the deformation that is expected along
the shear cracks. However, here the shear deformation is not calculated in relation to the
flexural deformation. Furthermore, the shear deformation is not assumed to depend on
the elongation of the outer longitudinal reinforcement, but rather on the centroidal axial
elongation, similar to what is done in the approach by [8].

c Check assumed deformation pattern

To check whether the assumptions regarding the shear deformations that were presented
in the previous section are valid, the shear deformations according to the two mechanisms
have been computed with the measured axial strains and compared to the experimental
data. The axial strains were obtained from the readings of the LVDTs along the sides
of the wall. Straight, radial cracks have been assumed to determine the rotation of an
element. That means, to compute the rotations θi and θi0 of an element at height Li,
the strains between 0.5Li and 0.5(Li + hei) as well as 0.5(Li + hei) and the top of the
instrumented area were used. The strains above the instrumented area were assumed to
be zero for simplicity. Figure 3.27 shows the distribution of shear strains as determined
from the experimental data compared to the one obtained with the equations shown in the
previous section.

The approach outlined in Section 3.7.7 would eventually yield shear deformations that are
related to the axial strain, as the rotations are expressed as functions of the axial strain.
Hence, the relation between the shear deformations and the axial elongation of the piers
was checked. Figure 3.28 indicates that there is indeed a good relation between the elon-
gation of the test units and their shear deformation. Only the data of the test units with
continuous reinforcement was used for this comparison, as the axial elongation of the test
units with splices is influenced by the splice. However, as Figure 3.16 indicates, the shear
deformations of the test units with lap-splices are almost equal to the ones of the corre-
sponding test unit without lap-splices. Therefore, it should ultimately be possible to deter-
mine the shear deformations of piers with lap-splices with the same approach as that used
for piers with continuous reinforcement. Furthermore, a prediction of the axial elongation
was compared to the measured axial elongation. The prediction was obtained in a manner
resembling the refined approach for the flexural deformation according to Equation (2.38).
That means the axial strain at first yield, obtained from the moment-curvature analysis,
was multiplied by factor M/M ′

y and assumed to follow a linear distribution over the height
of the pier. The difference between this factored axial strain at first yield and the axial strain
corresponding to the current curvature was taken as plastic axial strain, that was assumed
constant in the plastic hinge length according to [4]. As Figure 3.28 shows, the agreement
between measured and predicted elongation is good.

The comparisons between experimental data and predictions shown in this section indicate
that relating the shear deformations to the axial strains, based on the deformation due to
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Figure 3.27: Distribution of shear strains.

rotation at the cracks, seems possible. Figure 3.27 indicates that this mechanism, while
not yet perfected, seems reasonable and Figure 3.28 shows that it is possible to determine
the axial elongation of the piers with reasonable accuracy within the scope of plastic hinge
modeling.
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Figure 3.28: Experimentally determined shear deformation against experimentally determined axial elonga-
tion of the test units with continuous reinforcement and comparison of predicted and experi-
mentally determined axial elongation.
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d Analytical solution and comparison to data

To predict the shear deformations based on the principle outlined in the previous section,
but independent of the measurement grid, an analytical solution is necessary. The shear
deformations stemming from the cracks that cross the elements at the top edge can easily
be obtained with the following equation:

Δs =
1

2

∫
dy

∫
li

θi(y1)dy1dy =
1

2

lcr∫
0

1

0.5h

0.5lcr∫
0.5y

εl(y1)dy1dy (3.15)

The cracked height lcr was here chosen as upper integration limit as shear deformation can
occur only within the cracked area according to this approach. The solution to this integral
depends on the assumed strain distribution. For the simplest case of a constant axial strain,
it evaluates as:

Δs =
1

2

lcr∫
0

1

0.5h

0.5lcr∫
0.5y

εldy1dy (3.16a)

=
1

2

1

0.5h

lcr∫
0

εl (0.5lcr − 0.5y) dy (3.16b)

=
lcr
2h

εllcr
2︸ ︷︷ ︸
Δl

=
εll

2
cr

4h
(3.16c)

In plastic hinge modeling, the strains are assumed to be linearly distributed above the
plastic hinge itself. With the linear distribution of strains εl(y) = εm(1 − y/(0.5lcr)), where
εm is the maximum strain, the integration yields:

Δs =
1

2

lcr∫
0

1

0.5h

0.5lcr∫
0.5y

εm − εm
0.5lcr

dy1dy (3.17a)

=
εml2cr
12h

= Δl
lcr
3h

(3.17b)

Similarly, the analytical solution for the component due to shear cracks crossing the left
edge of an element and a constant axial strain is:

Δs =
εll

2
cr

4h
(3.18)

If the strain distribution is linear, the solution is:

Δs =
εml2cr
12h

(3.19)
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VK1 grad:0.89241
VK3 grad:2.2221
VK6 grad:0.90472
VK7 grad:1.3853

Table 3.8: Measured shear deformation against
axial elongation.

Table 3.9: Cracked heights lcr calculated from gra-
dient assuming that εl is constant.

VK1 lcr = 1.34m

VK3 lcr = 3.33m

VK6 lcr = 1.36m

VK7 lcr = 2.08m

As Equations (3.16c) to (3.19) show, cracks crossing the left and the top edge each con-
tribute the same amount of shear deformations. This was already indicated by Equations
(3.12), (3.9), (3.14) and (3.13). With a constant strain, θi decreases linearly over the height,
which leads to a linear decrease of the shear deformations predicted for each element. On
the contrary, θi0 is constant over the height if the strain is constant. In this case, however,
the term with which the rotation is multiplied increases with the height. As the maximum
Δs,i is the same as that obtained with the other mechanism each of the two mechanisms
contributes to half the total deformation.

Hence, if the axial strain εl is constant the total shear deformation follows to be:

Δs =
εll

2
cr

2h
= Δl

lcr
h

(3.20)

where Δl is the axial elongation of the pier. If the axial strain is linearly distributed between
the base and 0.5lcr with maximum value εm at the base the shear deformation is:

Δs =
εml2cr
6h

=
2

3
Δl

lcr
h

(3.21)

To render this approach applicable, two quantities still need to be predicted: The height
over which cracking extends lcr and the axial strain distribution (linear or constant). To get
an estimate of the first, the data shown in Figure 3.28 is used again. As the plot shows,
the shear deformation seems to be linearly dependent on the axial elongation. According
to Equation (3.20), the term lcr/h equals Δs/Δl. This means, the gradient of the linear
relationship between shear deformation and axial elongation, which equals Δs/Δl, can
be used to calculate lcr, as the height of the test unit h is known. Figure 3.8 shows the
data that was already shown in Figure 3.28, but this time the linear approximation and the
gradient of this linear approximation are included. Table 3.9 shows the heights over which
cracking extends lcr that are calculated from the gradients assuming a constant axial strain,
i.e. lcr = grad · h.
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e Discussion of results

While the experimental data and predictions presented in Section 3.7.7 show that it should
be possible to relate the shear deformation to the axial elongation of a test unit based
on the rotation at shear cracks, the previous paragraph showed that the simple approach
outlined herein needs further improvement. This section should hence not be regarded as
presentation of a perfected model, but rather as an idea for a potential approach to estimate
the shear deformations. Two issues that still need to be solved are how the height over
which cracking extends, and thus the height over which shear deformations are expected
to occur, is predicted and how a reasonable axial strain distribution is chosen.
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3.8 Influence of lap-splices

3.8.1 Previously introduced stress and strain limits

The influence of a lap-splice at the base of the pier is considered based on the strain and
stress levels introduced in Sections 2.7.3 and 2.7.4. The general modeling procedure is
as outlined in Section 2.7.2, which means that the same plastic hinge modeling approach
as for the piers without splice is used up to the onset of splice degradation. Hence, the
difference between a model for a pier with and without splice lies merely in the assumed
strain limits. Those strain limits for splices have either been derived for a certain drop of
lateral resistance [6] or for the onset of splice degradation [50]. The stress limits can be
used as an alternative to strain limits or, as in [31], to check whether the yield moment can
be attained at all. Table 3.10 summarizes the stress and Table 3.11 the strain limits for piers
VK2, VK4 & VK5.

If the distance between bars is taken into account in the stress criteria, the distance be-
tween the outer bars of the cross section is generally used, because these splices are ex-
pected to fail first. The concrete tension strength of VK2 was assumed to be fct = 0.6

√
35 =

3.5MPa and that of VK4 and VK5 was measured as 3.0 MPa and 3.3 MPa, respectively [3].
The stress limits determined by splitting failure are calculated with this concrete tension
strength only, i.e. the additional force component of the stirrups in Equation (2.62) was not
considered. Equation (2.63) was evaluated with km = 8 according to [63]. In [52] km = 12
is suggested for spliced bars placed in a hook of at least 90◦, but no recommendations are
made for other cases.

3.8.2 Additional strain limit

The confined concrete strain corresponding to peak stress is included in Table 3.11 for
comparison with the previously introduced strain limits for concrete. While the strain limit
according to Equation (2.28) [6] is intended as limit to determine the deformation corre-
sponding to 20% degradation of lateral load, [50] estimate the strain corresponding to the
onset of splice degradation. The argument for the latter limit is that the initiation of microc-
racking at peak stress weakens the concrete in tension and hence also the capacity of the

Table 3.10: Maximum allowable stress in spliced bars according to splitting strength and bond stress criteria.

Test unit VK2 VK4 VK5

Eq. (2.58) � fy � fy � fy

Eq. (2.62) 1.3fy 1.1fy 1.2fy

Eq. (2.63) 1.3fy 1.3fy 1.3fy

Eq. (2.64) 1.6fy 1.6fy 1.3fy

Eq. (2.58) fs = 0.5sl + 2 (dbl + c) fctls

Eq. (2.62) fs = (ls,eff[2cb,effk + 2cb,eff(nbl − 1)k]fct)/(nblAsb tanβ)

Eq. (2.63) fs = 54
(

fc
25

)0.25 (
25
dbl

)0.2 (
ls
dbl

)0.55 [(
cmin

dbl

)0.33 (
cmax

cmin

)0.1
+ kmKtr

]
Eq. (2.64) fs = ((ls

√
fc)/(0.3dblfy))fy ≤ fy
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Table 3.11: Maximum allowable strains for sections with spliced bars.

Test unit VK2 VK4 VK5

[50] εcu,s = 0.002 εcu,s = 0.002 εcu,s = 0.002

Eq. (3.3) εcu,s = 0.0031 εcu,s = 0.0033 εcu,s = 0.0033

Eq. (2.28) (Tab.3.4) εcu,s = 0.0048 εcu,s = 0.0047 εcu,s = 0.0047

Eq. (2.65) εsu,s = 0.021 εsu,s = 0.018 εsu,s = 0.018

Eq. (3.3) εcc =
(
1 + 5

(
fcc
fc

− 1
))

εc

Eq. (2.65) εsu,s =
(
1.2 ls

lsu,min
− 0.2

)
εsu

concrete to confine the lap-splices. However, the peak stress fcc and the corresponding
strain εcc at which microcracking begins are larger if the concrete is confined. Therefore,
εcc may also be considered a reasonable limit for the onset of splice degradation. To deter-
mine εcc, Equation (3.3) was employed together with the confinement effectiveness factor
according to Equation (2.29), which is repeated here for convenience.

kcon =

(
1− s

2bcon

)(
1− s

2hcon

)(
1−

∑
s2l,c/6

bconhcon

)

hcon

bc
onb

h

s

Sl,c
hcon

Foundation
Stirrup

Longitudinal 
bars

Figure 3.29: Confined concrete in section with spliced reinforcement.

As the piers do not have confined boundaries that could have been used to calculate the
lateral confining stresses, the reinforcement in the outer square section of 350 × 350mm
was used, see Figure 3.29. The section right above the foundation is subjected to the
highest bending moment and hence concrete crushing with subsequent splice failure may
initiate right above the foundation. Therefore, the confined concrete strength needs to be
estimated for this section. To do so, the foundation was treated like a stirrup in the sense
that the distance between the foundation and the first stirrup above was assumed as stirrup
spacing s and used for the calculation of the reinforcement ratio. It was also assumed
that all longitudinal bars are restrained against lateral movement by the foundation and
can hence be used to evaluate the third term in the above equation for kcon. The strain
limits obtained with this calculation are included in Table 3.11 together with the previously
mentioned limits.
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Figure 3.30: Prediction of force-flexural displacement relations according to Eqs. (2.38) and (2.9) for test
units with lap-splices compared to experimentally determined displacement. The markers indi-
cate at which displacements the strain levels listed in Tab. 3.11 are reached.

3.8.3 Computation of response

Table 3.11 shows that according to the evaluated splitting and bond stress criteria the lap-
splices should be strong enough to sustain yield stress or even ultimate stress, which is
fu = 1.17fy. The lowest stress limits are predicted with Equation (2.62) which is rather
sensitive to the tension strength of the concrete. With a tension strength of about 2.7 MPa,
which is only about 10% lower than the concrete tension strength of VK4, splitting cracks
are predicted to occur already at yield of the longitudinal reinforcement. The stirrups were
neglected in the evaluation of this equation based on the argument given in [50]: They
are activated only after the concrete cracks and neglecting them was assumed to yield a
better estimate of the stress which causes development of the first cracks. As there is some
scatter associated with the tension strength of concrete, one may come to the conclusion
that, according to this criterion, the splices might not be strong enough to sustain yield load
in reality. However, no experimental data is available to directly compare the stresses or
strains that occurred in the tests with the criteria listed in Table 3.10 and 3.11. Even though
the strains were measured, all measurement devices at the base of the pier cover also the
basecrack which impairs their data.

Despite the above mentioned scatter, it was assumed that the yield stress can be reached.
Hence, only the strain limits were set as boundaries for the outer fiber of a section in
the moment-curvature analysis. The section analysis was made for a section with single
reinforcement, i.e. the splices were not taken into account in any specific way, because
the section right at the end of the splice is assumed to be the one that initiates failure
as it is weaker. Figure 3.30 shows the predicted flexural top displacement compared to
the experimental flexural displacements. The force capacity resulting from the eccentricity
of the normal force according to Equation (2.57) is indicated with a gray dashed line. To
compute the residual moment, an axial load of P = 1300 kN has been used for all test units
and core dimensions were assumed corresponding to the center lines of the longitudinal
reinforcement.

3.8.4 Discussion of results

With regard to the displacement at which degradation begins, several observations can
be made for the examined test units: The strain limit εc = 0.002 [50], which intends to
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Figure 3.31: Prediction of force-flexural displacement relations according to Eqs. (2.38) and (2.9) for test
units with lap-splices compared to experimentally determined displacement.

mark the onset of degradation, appears to be a rather conservative strain limit. This is also
confirmed by local measurements above the basecrack, between 50 and 200 mm height,
which even partially indicate higher strains before degradation begins. Hence, it seems too
conservative to assume that a strain of εc = 0.002, reached only at the outer fiber of the
section, causes sufficient damage to weaken the splices. On the other hand, the strain
limits according to [6] in rows 3 and 4 of Table 3.11 correspond to a displacement that is
reached just after the splices start degrading, according to the predictions. This seems
logical as they are supposed to capture the point at which the force has dropped by 20%.
While this was apparently a reasonable limit for the test units included in the database from
which the limit was derived, it does not seem to be a good definition for the limit state of
VK2 - VK5. Contrary to what [6] apparently observed in their database, the response of
these piers is characterized by a rapid and not a slow degradation once the splice starts to
loose strength.

Therefore, it seems reasonable to not assume a slow degradation in between the onset
of splice failure and a larger ductility at which the residual capacity is reached, as also
suggested by [50], but divide the response in only two parts: before and after degradation
onset with an immediate drop of capacity in between. In the initial part of the response, the
lap-splices are still intact and able to transfer the full load which means that globally the pier
behaves like one with continuous reinforcement. After onset of splice degradation it enters
the second part of the response in which the resistance corresponds to that provided by
the eccentricity of the axial load. Strain limits similar to that of [50], which correspond to the
onset of degradation, are hence necessary to compute the response.

For the three analyzed test units, the displacement at which the confined concrete strain
according to Equation (3.3) (see Table 3.11) was reached provided the best estimate for the
onset of degradation, see Figure 3.30. With this strain and the residual moment according
to Equation (2.57), the responses shown in Figure 3.31 are calculated.
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3.9 Force-deformation relationship

3.9.1 Computation of response

In the following, the complete force-deformation relationship including flexural and shear
deformations is determined for the investigated piers. The plastic hinge length, strain limits
and all other quantities that are necessary to obtain the response are chosen based on the
results presented in the preceding sections. To compute the flexural response, Equation
(2.38) [7] was used. This equation allows predicting the envelope of the force-deformation
response and not merely a bilinear approximation. This equation was evaluated in com-
bination with the plastic hinge length according to Equation (2.9) [4]. Both equations are
repeated here for convenience:

Δcr = φcrL
2
s/3

Δ′
y = φ′

yL
2
s/3

Δfl = Δ′
y

M

My
+

(
φ− φ′

y

M

My

)
LpLs

with

Lp = (0.2h+ 0.05Ls)

(
1− 1.5

P

Agfc

)
≤ 0.8h

With this plastic hinge length, good estimates of the flexural deformation were obtained,
as shown in Section 3.6. Strain penetration was not considered, since the flexural de-
formations were overestimated with the approaches that explicitly account for this effect.
The deformation capacity, corresponding to a point that is reached shortly after the peak
load before the onset of significant degradation, is defined based on the attainment of the
concrete and steel limit strains according to Equations (2.28) and (2.30) [6]:

εcu,cyc = 0.0035 +

(
1

xc,con

)3/2

+ 0.4
kcon�vfyv

fcc

εsu,cyc =
3

8
εsu = 0.375εsu

The confinement effectiveness factor kcon is calculated using Equation (2.29). These limits
yielded slightly higher estimates of the limit curvature and thus a little less conservative
estimates of the deformation capacity than the limits according to Equations (2.26) and
(2.27).

As Section 3.7.4 shows, the models that were reviewed for the estimation of the Δs/Δfl

ratio yield similar results, if some modifications were made. To illustrate the determination
of the complete response, the Δs/Δfl ratio will here be included based on Equation (3.5)
(modified approach according to [8]), which directly relates the ratio to the axial strain:

Δs

Δfl
= 0.75α

εl
tan θφ

1

Ls
= 0.75α

εl

4

√
�v+kE�l�v

�l+kE�l�v
φ

1

Ls
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The ratio was determined for each curvature based on the corresponding axial strain and
moment obtained from the M-φ analysis. That means contrary to what was suggested in
the original approaches, no constant ratio was assumed in the inelastic range. Shear defor-
mation was only considered after F ′

y was exceeded because shear deformations seemed
negligible for smaller forces, also in light of the inaccuracies of both the experimental data
and the predictions at very small displacement levels. Hence, there is a little kink in the
predicted responses as they pass from flexural deformation only to flexural and shear de-
formation. In the inelastic range, the total deformation Δ = Δs + Δfl is hence evaluated
according to the following equation:

Δ =

(
Δ′

y

M

My
+

(
φ− φ′

y

M

My

)
LpLs

)⎛⎝1 + 0.75α
εl
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√
�v+kE�l�v

�l+kE�l�v
φ

1

Ls

⎞
⎠

1 ≤ α =

(
V

Vn
+

V

Vwc

)
≤ 2

If the test unit had a lap-splice at the base, the strain limit according to Equation (3.3) [5]
was used in combination with Equation (2.29) [34]:

εcc = εc

(
1 + 5

(
fcc
fc

− 1

))

fcc = fc

(
−1.254 + 2.254

√
1 +

7.94f ′
l (kcon, �)

fc
− 2

f ′
l (kcon, �)

fc

)

kcon =

(
1− s

2bcon

)(
1− s

2hcon

)(
1−

∑
s2l,c/6

bconhcon

)

Figure 3.32 shows the results obtained with the procedure summarized in this section for
the investigated seven test units. All responses were determined up to the limit strain.
For comparison, the deformation at which this limit strain is reached in the experiments is
indicated with a black marker in the plots.
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Figure 3.32: Predicted and measured response.

3.9.2 Discussion of results

In Figure 3.32 one can see that even though the modeling is based on relatively simple
assumptions the response is predicted reasonably well. The deformations at which the
predicted limit strains were, according to the LVDT readings, first reached in the experi-
ment in both positive and negative loading are indicated with black markers. Those strains
were not necessarily reached at peak load and during first cycles. As a result, the markers
may lie well below the envelope of the response. Except for VK6, the displacement that is
predicted for the limit strain level is up to 33% larger than the measured one (VK3). As indi-
cated previously, the strain limit for VK7 is rather high and a different strain had thus been
considered in Figure 3.13 for comparison with the experimental data. This time, for compar-
ison, the experimental deformation corresponding to this strain limit is included. Generally,
as indicated previously, the strain limits yield a rather conservative estimate of the defor-
mation capacity. However, VK3 failed shortly after the predicted deformation capacity in a
shear mechanism (see [1]). Since the latter cannot be accounted for within plastic hinge
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analysis and limits other than those based on strain are difficult to incorporate, the applied
limits hence seem to be a reasonable choice.

For the test units with spliced reinforcement concrete limit strains have been used, as the
splice failure was initiated by damage in compression. VK5 was an exception in the tests,
as failure of the splice was not initiated by a previous damage of the concrete in compres-
sion. Consequently, the deformation capacity is overestimated by using a compressive limit
strain. However, according to the estimates for the tensile force capacity of the lap-splice
that were evaluated here, the length of the splice should be sufficient to transfer the maxi-
mum possible load, see Table 3.10. No further insight into what could have triggered failure
of that splice was gained from the experimental data of the large scale tests. Hence, a
series on test units that are instrumented in more detail with lap-splices corresponding to
those of the large scale tests has been initiated [64].

As evident in Section 3.7, an exact prediction of the shear deformations within the scope of
plastic hinge analysis appears difficult. Simplifying assumptions made in some models to
estimate the shear to flexural deformation ratios of well detailed piers, such as a concentra-
tion of shear deformations in the plastic hinge and a constant ratio over the entire ductility
range, do not hold for the investigated piers. However, satisfactory results were obtained
through modification of existing models to estimate the shear to flexural deformation ratio.
Especially in light of the simplicity of the plastic hinge modeling approach, the quality of the
predicted deformations appears to be good.

3.10 Conclusions

Based on comparison with the experimental data, a plastic hinge modeling approach was
identified with which very good agreement of the flexural deformation was obtained. The
predictions of the flexural deformation were made with the refined approach according to
Equation (2.38) [7] in combination with the plastic hinge length according to Equation (2.9),
that was explicitly developed for walls by [4]. To define the deformation capacity, the strain
limits according to [6] were used as they were larger than the ones according to [7] in the
examined cases. Nevertheless, they still yield conservative estimates of the deformation
capacity, corresponding to a point shortly after peak shear force. For a less conservative
estimate of the deformation capacity, a change in the mechanism needed to be taken into
account in most cases, as all test units with continuous reinforcement, except for VK7,
eventually failed in shear or a combined flexure-shear mode. This mechanism can, how-
ever, not be accounted for within the scope of plastic hinge modeling, and models such as
the one presented in Chapter 5 are necessary. Based on the test data of VK7 alone, no
additional limit for an ultimate flexural state that marks the onset of a severe degradation of
the compression zone could be established.

Regarding the shear deformation, one critical point in the two reviewed models that predict
the shear to flexural deformation ratio Δs/Δfl was the dependency on the measured crack
angles. If the models were employed with a crack angle estimate accounting for the rein-
forcement contents and a correction factor accounting for the shear resistance of the pier,
satisfactory predictions were obtained with both of them. However, both models do then
partially rely on some correction factors, which might not be regarded an optimum solution
and is linked to a certain scatter.

Besides the existing approaches that aim at predicting Δs/Δfl, an approach that relates the
shear deformation to the axial elongation of the pier was investigated. While the preliminary
results appear promising, this approach needs further development to be applicable within
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the scope of plastic hinge modeling. However, comparison with the experimental data
showed that the mechanism the approach is based on appears reasonable. Furthermore,
it was shown that the prediction of the axial elongation of the piers agrees well with the
experimentally determined one.

With regard to the influence of lap-splices at the base of the pier it was observed that the
global response of these test units is the same as that of corresponding test units with con-
tinuous reinforcement until the degradation of the splice sets in. Hence, the influence of the
lap-splices on the behavior could easily be accounted for with a strain limit corresponding
to the peak strain of confined concrete. Once this limit is exceeded, the shear force resis-
tance decreases quickly. For this reason, the resistance is assumed to drop to its residual
value which depends on the maximum eccentricity of the axial load. This limit is applicable
for lap-splices without confinement that are long enough to sustain the maximum force in
tension. It may be regarded as an upper bound limit for these splices and further research
is required to investigate whether e.g. certain loading conditions can cause a splice failure
in tension before this limit is reached.
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4 Review and application of shear-strength
degradation models

4.1 Introduction

This chapter presents a brief overview of various types of shear strength degradation mod-
els for RC members. It is beyond the scope of this work to provide a complete summary
of existing models. Instead, only some modeling approaches which are commonly used in
earthquake engineering will be presented as examples.

Generally, three types of shear behavior and failure modes under seismic loading can be
distinguished [65]: A brittle shear failure occurs if the shear capacity is lower than the shear
demand imposed on the member by the formation of a flexural hinge. In this case, the
member fails at relatively small displacements before its flexural capacity is reached. Shear
failure in the inelastic range may occur if the shear capacity is decreasing more rapidly than
the shear demand with increasing deformations. If the shear capacity is higher than the
shear demand in the entire deformation range the member will eventually fail in flexure.
The emphasis in this chapter will be on shear failure in the inelastic range, since it is the
type of shear failure observed in the experiments that were conducted in the framework of
this project [3, 1].

As mentioned, it is commonly recognized that the shear strength of a RC member is de-
creasing under cyclic loading for several reasons [66]: (i) The resistance provided by ag-
gregate interlock is decreasing due to increased crack widths and grinding of the crack
surfaces under cyclic loading; (ii) the shear resistance of the compression zone is reduced
by the formation of flexural cracks; (iii) the resistance due to dowel action is decreasing due
to the formation of plastic strains; (iv) the development of plastic strains in the reinforcement
weakens the capacity of the compression strut, because the tensile strains perpendicular
to the strut increase.

In the following section, ductility-dependent shear strength models will be presented. This
type of models includes a, typically empirically determined, ductility-dependent factor with
which the shear strength in the inelastic range is reduced. Those models are based on the
above mentioned observation that the resistance gradually decreases under cyclic loading
with increasing displacement amplitudes and is commonly used in earthquake engineering.
In the subsequent section, examples of drift capacity models are presented. These mod-
els aim at estimating either the deformation capacity corresponding to the loss of lateral
resistance or to the loss of axial load bearing capacity. Drift capacity models are generally
derived from an experimental database, for instance by least square datafitting. Section
4.2.3 introduces a model which takes into account the shear capacity of the transverse re-
inforcement and the compression zone. The latter is based on the plastic limit of concrete
using Rankine’s failure criterion. Section 4.2.4 shows an approach which treats the section
of a column between maximum moment and inflection point as shear panel. Both the in-
teraction between the shear and the flexural mechanism and the deformation components
due to both mechanisms are determined that way.
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4.2 Shear-strength degradation models

4.2.1 Shear-capacity models dependent on ductility

Several researchers have developed shear capacity models on the basis of strut-and-tie
models that comprise also a ductility dependent correction factor, e.g. [67, 68, 10, 69, 70].
Unlike the initial capacity, which is composed of the resistance of different load bearing
mechanisms, the degradation is mostly empirically determined. Concerning the degra-
dation, the models basically differ with regards to whether only the concrete or also the
transverse reinforcement component is assumed to degrade.

According to the “revised UCSD model” [10], which is a further development of the model
presented in [68], only the concrete component degrades. Originally, the model was devel-
oped for circular columns and validated with a database containing all of the three above
mentioned failure types. However, modifications of the geometrical relations make it also
applicable to rectangular columns [7]. The shear capacity Vr is assumed to be the sum of
a transverse steel truss component Vs, the concrete shear strength Vc and a component Vp

which is accounting for the inclination of the compression strut of the axial load.

Vr = Vs + Vc + Vp (4.1a)

Vs = Avfyv
h− xc − c

s
cot θ (4.1b)

Vc = αβkμ
√

fc0.8Ag (4.1c)

Vp = max

(
P
h− xc

2Ls
, 0

)
(4.1d)

where h is the total section depth, xc the compression zone depth, c the concrete cover
measured to the center of the transverse reinforcement, s the transverse reinforcement
spacing and θ the crack angle. If the member is under tension, and hence the axial load
negative, Vp is set to zero. The factors α, β and kμ are empirically determined values which
are introduced to consider the influence of the aspect ratio Ls/h, longitudinal reinforcement
content �l and ductility demand.

1 ≤ α = 3− Ls

h
≤ 1.5 (4.2a)

β = 0.5 + 20�l ≤ 1.0 (4.2b)

An increasing longitudinal reinforcement content is assumed to have a beneficial effect
on the shear force capacity for the following reasons: First, the resistance due to dowel
action increases. Second, the compression zone depth and thereby its shear resistance
increase and third, the crack width is reduced because of a finer, more evenly distributed
crack pattern. To incorporate the ductility dependency in the shear force capacity model
two relations for the factor kμ are proposed for the assessment of members subjected to
uniaxial loading. One is dependent on curvature ductility μφ and the other on displacement
ductility μΔ:
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Figure 4.1: Resistance of the compression zone Vc,comp, aggregate interlock Vci and dowel action Vd,
which are illustrated in (a), are commonly implicitly included in Vc. The ductility dependency is
illustrated in (b).

kμ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.29 if μφ ≤ 3

0.29− 0.24(μφ − 3)

12
if 3 < μφ < 15

0.05 if μφ ≥ 15

(4.3) kμ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.29 if μΔ ≤ 2

0.29− 0.24(μΔ − 2)

6
if 2 < μΔ < 8

0.05 if μΔ ≥ 8

(4.4)

Unlike in the “revised UCSD model”, not only the concrete component but also the trans-
verse reinforcement component is assumed to degrade in the model proposed by [69], see
Equation (4.5). Deterioration of both bond and anchorage of stirrups are stated as reasons
for this. Just as in the previous model, an increase of shear strength with decreasing aspect
ratio as well as a beneficial effect of an axial compression force is included. An increas-
ing strength with increasing longitudinal reinforcement ratio has on the contrary not been
observed in the test data used for validation and is thus not incorporated. Diagonal com-
pression failure was assumed to be decisive only for short columns with a high axial load
ratio. In all other cases, tensile shear failure was assumed to be the mechanism governing
failure. Hence, the concrete component was determined from Mohr’s circle based on the
assumption that the maximum capacity is reached when the principal tensile stress equals
the tensile strength of concrete.

Vr = kμ (Vs + Vc) (4.5a)

Vs =
Avfyvd

s
(4.5b)

Vc =

(
0.5

√
fc

Ls/d

√
1 +

P

0.5
√
fcAg

)
0.8Ag (4.5c)
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Note that the aspect ratio is related to the effective section depth d rather than h in this case
and that the axial load P is included in the concrete component. The ductility dependent
degradation factor in this model is:

kμ =

⎧⎪⎪⎨
⎪⎪⎩
1.0 if μΔ < 2

1.0− 0.3
μΔ − 2

4
if 2 ≤ μΔ ≤ 6

0.7 if μΔ > 6

(4.6)

Another model of this kind was developed based on test data of 239 cyclic tests which
exhibited a tensile shear failure after flexural yielding [66]. The database included circular
and rectangular columns, beams and six walls. Two models were proposed whose em-
pirical factors were determined by statistical data-fitting, one in which merely the concrete
component was assumed to deteriorate, as in [10], and one in which degradation was as-
sumed for concrete and steel truss, similar to [69]. Only the latter is presented herein as it
is reported to yield better results. The degradation was incorporated based on the ductility
μpl
Δ = (θu,exp − θy,exp)/θy,calc with the rotation θy,calc according to Equation (4.7), which

corresponds to the drift of beams and columns at first yield in [24]. Contrarily to this, ex-
perimental ductilities were used in the above mentioned model by [69] and no information
is given for the “revised UCSD model”. For an explanation of the components included in
Equation (4.7) the reader is referred to Section 2.5.1.

θy,calc = φ′
y

Ls + kvz

3
+ 0.0013

(
1 + 1.5

h

Ls

)
+ ksl

0.13φ′
ydblfy√
fc

(4.7)

The steel truss component is calculated based on the transverse reinforcement content �v,
internal lever arm z and a crack angle of 45◦ as follows:

Vs = �vbzfyv (4.8)

The total shear capacity is calculated as sum of the steel truss component and the concrete
component and includes empirical factors accounting for the influence of the normal force,
longitudinal reinforcement content, aspect ratio and displacement ductility:

Vr =
h− xc

2Ls
k1 + (1− 0.05kμ)

[
0.16k2(1− 0.16k3)

√
fcAg + Vs

]
(4.9a)

k1 = min(P, 0.55Agfc) (4.9b)

kμ = min(5, μpl
Δ) (4.9c)

k2 = max(0.5, 100�l) (4.9d)

k3 = min(5, Ls/h) (4.9e)

4.2.2 Drift capacity models

When the force - deformation behavior of a structure is computed, the points at which either
shear or axial load failure occur are of particular interest. The former is commonly defined
as a certain drop of shear resistance and the latter as a loss of both horizontal and axial
load bearing capacity. Since the models introduced in Section 4.2.1 are used to compute
shear capacity curves, one might conclude they could be employed to determine the point of
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shear failure. However, this is typically not recommended by their authors, e.g. [69, 66, 71]
because the capacity curves have low gradients and hence a potential intersection with
a force-deformation relationship would occur at a low angle. Small variations in the shear
capacity relation then result in large variations of the predicted displacement at which shear
failure occurs.

Therefore, drift capacity models which aim at directly predicting the drift at which failure
occurs have been developed. Different failure criteria, such as Coulomb’s failure criterion
in conjunction with the mean stress of a section [72], strain limits for curvatures [73] or
empirically determined dependence on parameters influencing the drift capacity, such as
axial load level n = P/(Agfc) and transverse reinforcement content �v [74, 75, 76], have
been established. Examples of the latter type of models are presented in Equation (4.10)
[76] and Equation (4.11) [75] which have been derived by nonlinear regression and least-
square error fit of experimental data, respectively. Both define drift capacity as the drift
corresponding to a 20% drop in lateral load resistance.

(
Δ

Ls

)
= 0.564 + 8.489k1 − 7.804k21 (4.10a)

k1 = (1 + Ls/h)

(
1−
√

P

Agfc

)√
�vfyv
fc

(4.10b)

(
Δ

Ls

)
=

3

100
+ 4�v − 1

41.52

v√
fc

− 1

40

P

Agfc
≥ 1

100
(4.11)

Besides determining the displacement at shear failure, it is also important to determine the
displacement corresponding to the loss of axial load bearing capacity. To predict the latter
and also to estimate the gradient of strength degradation after shear failure, a formulation
based on the degrading shear friction resistance of the critical diagonal crack is suggested
by [74], see Equation (4.12). The friction coefficient is expressed in dependence of the drift
ratio which depends on the transverse reinforcement ratio. The drift ratio at failure is the
intersection with the x-axis according to Equation (4.12a) and the degrading capacity with
Equation (4.12b):

(
Δ

Ls

)
axial

=
4

100

1 + tan2 θ

tan θ + P
(

s
Avfyvhcon tan θ

) (4.12a)

dV

d
(

Δ
Ls

) =
−25P

1 + tan2 θ

(
Avfyvhcon

Ps
tan2 θ + 1

)2

with θ = 65◦ (4.12b)

where hcon is the depth of the confined core defined by the centerlines of the stirrups.

Due to their empirical nature, the use of the models presented in this section is restricted
to RC members with the same characteristics as those they were calibrated against, which
renders their possible application range rather narrow. Typically, columns were used for the
derivation of the models and shear and axial stresses are thus high in comparison to those
of walls, for instance.
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4.2.3 Truss model with plastic limits

The shear capacity of columns corresponds to the sum of the transverse steel resistance
and the shear resistance of the compression zone, according to the model by [77]. Aggre-
gate interlock and dowel action were considered to be of minor importance. Unlike in the
previously mentioned approaches of that type, the degradation of the concrete component
is not determined empirically but based on Rankine’s failure criterion (see Figure 4.2). The
strain distribution in the compression zone is obtained from moment curvature analysis and
the stress distribution is determined based on the strain. The allowable shear stress at each
point in the compression zone is calculated from Mohr’s circle as the capacity left until the
principal stress exceeds either compression or tensile strength of the concrete according
to Equation (4.13), see also Figure 4.2.
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Figure 4.2: Assumptions underlying the model by [77]

Vc =

∫ xc

0

vc(x)bdx =

⎧⎪⎪⎨
⎪⎪⎩
∫ xc

0

√
fc(fc − σ(x)) compression failure∫ xc

0

√
fct(fct + σ(x)) tension failure

(4.13)

where vc is the shear stress capacity of concrete, fc and fct are the concrete compression
and tension strength, respectively, and σ(x) is the axial stress. The total shear capacity is
the sum of the concrete component Vc and the steel truss component Vs:

Vs = �vbde1fyv cot θ (4.14)

where de1 is the effective depth measured between the centerlines of the outer longitudi-
nal reinforcement layers and θ is the crack angle. For the latter, 35◦ were recommended.
Furthermore, strain limits for bar buckling as well as bar rupture were proposed and the de-
formation was computed using a plastic hinge approach with decreased elastic stiffness to
account for slip and shear deformations according to [78]. Note that this model was devel-
oped for columns and the authors state that the model still needs verification for structures
with different characteristics [77]. All listed criteria are met by test units VK1-VK7 except for
the required longitudinal reinforcement ratio, which is higher than that of the examined test
units.
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Figure 4.3: Fundamentals of USFM method (after [83]).

4.2.4 Shear - flexure interaction model

An approach in which flexural response of a column, obtained from section analysis of a
uniaxial fiber element, is combined with the shear response obtained from a biaxial shear
panel has been proposed as “axial-shear-flexure interaction” (ASFI) model in [79, 80] and
simplified to a “uniaxial-shear-flexure model” (USFM) in [81, 82]. Originally, the approach in-
cluded a full analysis of the shear panel according to the MCFT. In the more recent publica-
tions [81, 82], simplifying assumptions regarding the axial strain and principal compression
strain were made with which an iterative calculation of the shear response was eliminated.
Both versions of the model are based on two section analyses carried out at the point of
inflection and at the point of maximum moment. The element bound by those two sections
is regarded as shear panel subjected to the average stresses obtained from the two sec-
tion analysis. All further calculations in the model are made for this shear panel. Figure 4.3
visualizes some basic assumptions of the USFM method.

Two sources of strength degradation are included in the model: Compression softening of
concrete due to transversal strains stemming from the combined action of flexure and shear
as well as degradation of the stresses transferred across cracks due to crack opening. The
two main assumptions, which enable the simplified calculation without iterations, concern
the axial and principal strains. Firstly, it is assumed that the principal compressive strain
ε2 in the shear panel corresponds to the average strain at the center of the compression
stress block determined from section analysis. Secondly, the axial strain εl,cl is assumed
to be the average axial strain at the center line obtained from the two section analysis.

ε2 = 0.5(εc,i + εc,i+1) (4.15a)

εl,cl = 0.5(εl,cl,i + εl,cl,i+1) (4.15b)

The axial strain at the center line that are due to shear εl,cl,sh could be added to the latter
equation but, as stated in [81], this has generally little effect on the final result. Indices i
and i+1 denote sections i and i+1 for which section analysis is performed, εc is the strain
corresponding to the concrete stress block, l is the longitudinal axis and cl denotes the
center line of the member. Relations adapted from the MCFT are then used to calculate

September 2014 139



662 | Seismic Safety of Existing Bridges - Cyclic Inelastic Behaviour of Bridge Piers

concrete and steel stresses fc1, fcy and fsy as well as the principal tensile strain ε1 =
εl + εv − ε2, which is needed to obtain the compression softening factor β.

β =
1

0.8− 0.34 ε1
εc0

(4.16)

where εc0 is the concrete strain at peak stress. The stress that can be transferred across a
crack and hence the overall shear force is limited by what can be transferred via aggregate
interlock and the reinforcement crossing the crack:

vmax = vc,i + fyv�v cot θ (4.17a)

vc,i =
0.18

√
fc

0.31 + 24w/(ag + 16)
(4.17b)

where ag is the maximum aggregate size and �v and fyv are the transverse reinforcement
content and yield strength, respectively. To obtain the overall deformation, the drift due
to flexure θf , shear θs and anchorage slip θslip, if applicable, are added. The flexural
deformation is calculated by means of a plastic hinge model. The shear distortion of the
shear panel is equal to the drift due to shear.

θtot = θf + θs + θslip (4.18)

with

θf =
Δ

Ls
=

1

Ls

∫ Ls

0

xφ(x)dx (4.19a)

θs =
2(εl − ε2)

tan θ
(4.19b)

where φ(x) is the curvature distribution along the longitudinal axis. Originally, an approach
by Okamura and Maekawa was proposed by the authors to calculate the slip.

To assess the performance of the USFM, the latter was implemented on the basis of a
moment-curvature analysis procedure as outlined in [81] for VK1-VK7. Hence, the moment
was not calculated using the concrete stress block and the material models were the same
as those used in Section 3.5. The secondary shear crack check introduced in [82], which
deals with the response of a column subjected to double-curvature at the inflection point,
was not included. Instead of including a slip component, the flexural deformation was again
calculated according to [7], where the influence of strain penetration is included in the
plastic hinge length. The reader is referred to Section 4.3 for an illustration and evaluation
of the results obtained with the USFM according to the procedure outlined in this paragraph.
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4.3 Application of models to test units

4.3.1 Introduction

To asses their performance, the results obtained with the shear and drift capacity models
described in Section 4.2.1 to 4.2.4 were compared to the experimental results. Test units
VK6 and VK7 are chosen for the comparison. VK6 did fail in a flexural-shear mode, which
means it exhibited severe damage along a diagonal crack accompanied by failure of the
compression zone. On the contrary, VK7 failed in flexural compression and the shear cracks
did not open significantly during the experiment. Hence, the capacity predicted with all
models should exceed the measured resistance of this test unit, whereas the predictions
for VK6 should capture the degrading branch of the response. However, one needs to
bear in mind that none of the models was specifically developed for wall type structures
but rather for columns and beams. Although the models are therefore, strictly speaking,
applied outside their original scope, they are examined here as corresponding models for
walls are currently lacking.

4.3.2 Ductility dependent models

Figure 4.4 shows the comparison between the predictions according to the models pre-
sented in Section 4.2.1 and the experimentally determined force-displacement envelopes
in positive and negative loading direction. The predicted shear force capacities for test unit
VK7 exceed the measured ones in the entire deformation range, as it was expected. While
the model according to [10] predicts a capacity that is significantly higher than the mea-
sured resistance, the capacity according to [42] and [66] is only slightly higher than mea-
sured. Nevertheless, each of the three models correctly implies that flexural failure occurs
eventually. The latter two models consider, besides a degradation of the concrete com-
ponent, also a degradation of the resistance of the transverse reinforcement. Comparison
of the predictions with the experimental data of VK6 visualizes well the above mentioned
issue regarding the glancing intersection of the force-displacement response and the shear
capacity curve. The predicted gradient of the shear strength degradation of [42, 66] agrees
well with the experimental degradation right after attainment of the peak value. However,
as evident in Figure 4.4, it would not be possible to define a certain drift as displacement
capacity. Even though the initial degradation is captured well by the two mentioned models,
the onset of stronger degradation is not predicted by any of the two.

4.3.3 Drift capacity models

As mentioned previously, drift capacity models aim at directly predicting the drift at which
failure occurs rather than the degradation of shear mechanisms. Failure is typically defined
as a certain drop in lateral resistance, or, as in the axial capacity model [74], as loss of axial
load bearing capacity. However, Figure 4.5 shows that the capacities predicted for both
test units significantly exceed the measured ones. The main reason for this might be that
these empirical drift capacity models are derived from databases containing experimental
data of columns and not walls. While the criteria for application are formally met for the
drift capacity model by [75], the other two models are actually applied outside their scope.
The axial capacity model was originally validated against the columns tested by [84] and
[85] which had higher aspect and longitudinal reinforcement ratios as well as lower steel
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Figure 4.4: Ductility dependent shear capacity predictions compared to test results.

strengths of the reinforcement. The columns tested by [76] on the other hand had higher
normal force ratios than the test units investigated here. Generally, it is not advisable to
apply empirical models to structures which do not comply with the database from which
the model was derived. Figure 4.5 confirms that if this is done nevertheless, rather poor
predictions of the observed behavior are obtained.
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Figure 4.5: Ductility dependent shear capacity predictions compared to test results.

4.3.4 Truss and interaction models

The remaining two modeling approaches introduced in Section 4.2 have also been de-
veloped for columns, originally. Figure 4.6 shows their application to test units VK6 and
VK7. The shear flexure interaction model “USFM” significantly underestimates the shear
capacity of both test units. The peak load is not even reached before the capacity starts
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degrading. This is mainly due to an overestimation of the compression softening. The sim-
plifying assumption regarding the principal tensile strains leads to an overestimation of the
compression softening factor. The axial strain expected at the centroid of a wall section is
very high and while the simplification that it corresponds to the principal tensile strain might
hold for columns, it seems to be an assumption that is too crude for walls.

The capacity according to the truss model with plastic limits [77] degrades very fast with
increasing deformation. This is due to the prediction of a rapid degradation of the concrete
component with increasing curvature, so that at relatively low displacement ductility lev-
els, the shear force capacity results almost exclusively from the transverse reinforcement
component Vs. As the transverse reinforcement content of VK6 is very low, the model pre-
dicts a much earlier onset of degradation than measured. The early degradation and low
residual capacity might again be due to simplifications which are feasible for columns but
not necessarily for walls. Again, one needs to keep in mind that the model is applied here
outside its originally intended scope. The specific assumptions that render the model in-
applicable for VK6 might be the those concerning the transfer of shear stresses across the
crack. No aggregate interlock or friction forces are considered in this model, which might
be a valid assumption for columns but not for walls, where aggregate interlock constitutes
an important load transfer mechanism (see Chapter 5).
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Figure 4.6: Shear and drift capacity predictions compared to test results.

4.3.5 Conclusions

As evident from the comparisons of predictions and experiments in the previous sections,
the predictions obtained with the drift capacity models for beams and columns do not agree
well with the experimental wall data. Especially the models in Sections 4.2.2 through 4.2.4,
which have been empirically determined from column and beam data or contain assump-
tions which are only valid for columns and beams, yield poor estimates of the drift capacity
of walls. The assumptions on which these models are based, e.g. the neglect of the ag-
gregate interlock mechanism, simply do not hold for walls. Better estimates are obtained
with the ductility dependent shear models, introduced in Section 4.2.1. For VK7 all of them
correctly predict a capacity that is higher than the measured resistance and for VK6 two
of them [42, 66] predict a degradation that is close to the experimental gradient. However,
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Figure 4.4 also shows a large range of capacities predicted with these models which render
the predictions unreliable.

Due to the mentioned shortcomings of the existing models for application to wall-type struc-
tures the development of new models for walls is necessary. Given the lack of experimental
data of wall tests, empirical drift capacity models do not appear to be a good option. Mod-
els that specifically take into account the characteristics of walls are necessary to obtain
reliable estimates of the drift capacity of walls. One such approach is introduced in Chapter
5.
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5 Validation of a kinematic model

5.1 Introduction

The three parameter kinematic theory (3PKT) [13] was developed to describe the load-
deformation relationship of structural walls. It predicts not only the pre-peak response of
shear critical walls, but it is capable of capturing the post-peak response until failure. Thus,
the strength of this model is that it allows predicting both the force and the deformation
capacity, while usually a separate approach is required for each.

The theory is based on the simplified kinematics of walls which develop diagonal shear
cracks and fail along such a crack eventually. Based on these kinematics, the deformation
pattern of the walls is described by means of three independent parameters. Therefore, the
3PKT is a direct extension of the 2PKT, which was previously developed for deep beams
[12]. The deformations of deep beams could be completely described with two parameters,
namely the elongation of the longitudinal reinforcement and the shear deformation at the
tip of the crack. A third parameter, the vertical displacement of the part above the critical
crack due to the axial load, was introduced for walls. The force components that contribute
to the shear resistance of the wall can be estimated from strains and crack displacements
derived from the assumed deformation pattern.

In the following sections, the basics of the 3PKT are explained (Section 5.2) and its per-
formance in predicting the response of potentially shear critical walls is evaluated (Section
5.4). Section 5.3 presents the database used for this evaluation. Furthermore, in Section
5.5 the influence of several characteristics on the response of walls is evaluated using the
3PKT. Section 5.6 discusses the size of the critical loading zone and potential relations with
different parameters. Finally, some conclusions are provided in Section 5.7.

5.2 Three parameter kinematic theory - 3PKT

5.2.1 Kinematics assumed in the 3PKT

The three parameter kinematic theory for the behavior of walls was developed by [13] as
an extension of a two parameter kinematic theory for deep beams [12]. It is a “kinematic”
theory because it is based on an idealized representation of the deformation pattern of
walls. The theory was developed for shear critical walls, that means walls which develop
diagonal cracks and eventually fail along such a crack. Hence, the 3PKT assumes that such
a shear crack develops which separates the upper nearly uncracked part of the wall, which
is thus regarded as rigid body, from the radially cracked fan below. Besides the crack and
the degradation associated with opening and sliding along the crack, the part just above the
crack tip, the so-called “critical loading zone” (CLZ), plays an important role in describing
the failure mechanism. In wall tests, it has been observed that failure along a shear crack
is accompanied by severe damage of the wall around the crack tip, compare also Figure
5.2 on page 153. The CLZ accounts for this damaged area.
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Figure 5.1: Deformation pattern with three degrees of freedom and force components as assumed in the
3PKT.

Figure 5.1a visualizes the kinematics and the resulting deformation pattern assumed in
the 3PKT. Basically, the wall is divided in three parts: a radially cracked fan under the
shear crack, a rigid body above the shear crack, and the previously mentioned critical
loading zone at the bottom tip of the rigid body. The deformation of these parts is described
with the three parameters also indicated in Figure 5.1a: The elongation of the longitudinal
reinforcement described by the average strain εs,avg, the horizontal displacement of the
CLZ Δc and the shortening of the CLZ Δcv. All points below the crack are assumed to
rotate around the crack tip, which means that any deformation is assumed perpendicular to
the radial cracks. The magnitude of this rotation is determined by the average strain in the
longitudinal reinforcement εs,avg.

The deformation of the critical loading zone depends on the loading it is subjected to and
the resulting angle of the reaction force. If the reaction force of the CLZ, FCLZ , is parallel
to the shear crack, the tip of the CLZ is assumed to translate horizontally by Δc and the
vertical displacement Δcv is zero. This is always the case for deep beams which are not
subjected to axial load, hence parameter Δcv was not included in the 2PKT [12]. If the wall
is, however, subjected to an axial load, the reaction force FCLZ is more vertically inclined.
The maximum angle of this force corresponds to the inclination of the center line of the
CLZ, i.e. 0.5θ in relation to the vertical axis. In this case, the CLZ is also shortened in
compression which yields a vertical deformation component Δcv.

The rigid body itself is assumed to rotate around the tip of the shear crack and translate
according to displacements Δcv and Δc of the CLZ. The latter two cause a downward sliding
of the rigid body along the shear crack while the elongation of the longitudinal reinforcement
causes the opening of the shear crack.

Taking into account the deformations described in the preceding paragraphs leads to the
following expressions for the deformations in the radially cracked fan below the crack:
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δx(x, y) =
y

d

y
h−xd∫
0

εs(l)dl (5.1a)

δy(x, y) =
h− x

d

y
h−xd∫
0

εs(l)dl (5.1b)

where l is a variable along the y -axis and all dimensions are according to Figure 5.1.
Accordingly, the deformation of the rigid body above the crack is described by:

δx(x, y) =

(
εs,avglt

d
+

Δcv

d

)
y +Δc (5.2a)

δy(x, y) =
εs,avglt

d
(h− x) +

Δcv

d
(h− d− x) (5.2b)

where lt is the length over which the longitudinal reinforcement is activated and εs,avg is
the average tensile strain in the reinforcement εs,avg = (1/lt)

∫ lt
0
εs(l)dl. To determine the

crack angle, the formulation based on a simplified expression of the MCFT [40] is used
again (see Equation (2.53)):

θ = 29◦ + 7000εaxial(l) ≤ α = arctan

(
h

Ls

)

Due to the generally low spacing of the longitudinal reinforcement, the size effect term of
Equation (2.53) is not considered here and the maximum angle is bound by the geometry
and the shear span of the wall. Contrary to what has been done in Section 3.7, the equation
is here evaluated based on a procedure included in the Canadian standard [86], which
utilizes a strut-and-tie approach to determined the shear strength on which the estimate
of the angle is based. Hence, the strains used here differ from those used in Section 3.7,
where the model proved to not be the best fit estimate for the angle. Furthermore one
needs to keep in mind that the approach presented here is less sensitive to variations in
the angle. If there is a loading beam at the top of the wall, the clear distance between the
base of the pier and the bottom edge of the loading beam is used instead of the entire
shear span length. The clear distance is used in these cases because it is assumed that
the crack does not cross the loading beam.

5.2.2 Load bearing mechanisms considered in the 3PKT

Figure 5.1b shows the force components that are assumed to contribute to the shear re-
sistance of walls. At the shear crack itself, an aggregate interlock force Fci develops de-
pending on the crack width w and the slip s along the crack. The opening of the shear
cracks also causes a strain εv in the transverse reinforcement and thus a force Fs(εv). The
latter is located at the centroid of the activated transverse reinforcement crossing the crack
as the reinforcement is lumped in one tie in the 3PKT. Also the longitudinal reinforcement
distributed in the tension side of the wall, which is assumed to be 0.5hb, is lumped in one
tie at its centroid. Hence, some reinforcement that is possibly in tension in the other half of
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the wall is neglected and instead the reinforcement that is considered is assumed to have
equal strains and stresses. Besides the longitudinal force the reinforcement also exerts a
force due to dowel action Fd as long as it is not yielding at the shear crack. Three separate
force components are acting in the CLZ: The reaction force FCLZ originating from com-
pression of the concrete in the CLZ, a vertical force Fsc stemming from compression of the
reinforcement in the CLZ and a friction force Fcf due to contact of the CLZ with the fan un-
derneath the crack. Besides the forces already described, the reaction force Fc, depending
on the concrete compression strain εc, develops in the compression zone at the base of
the radially cracked fan. The following paragraphs summarize the assumptions behind the
determination of the force components and the equations with which they are calculated.

The aggregate interlock force Fci along the crack is computed in dependence of crack width
and slip utilizing the contact density model by [87] as follows:

Fci = 0.18vci
bd′

sin θ

vci =

π/2∫
−π/2

σcon(w, s)
(
1− exp

(
1− 0.5

ag
w

))
As,u0.5 cosϕ sinϕdϕ

(5.3)

where d′ is the distance between the outer reinforcement bar and the compression edge of
the wall, σcon is the contact stress normal to the contact surface as a function of crack width
w and slip s, ag is the maximum aggregate size and As,u = 4/π is the entire surface area
per unit crack plane. The exponential expression in brackets denotes the ratio of the surface
area which is in contact and 0.5 cosϕ is the contact density function which represents the
statistical distribution of inclinations ϕ, which describe the profile of the undulated crack
surface. To determine the contact density function, [87] measured the shapes of rugged
crack surfaces and found that the above equation is a good representation of the surface
profile. The stress is always assumed perpendicular to the surface. To obtain the shear
stress, the horizontal components of σcon are integrated for all inclinations occurring along
the crack surface based on the contact density function and the surface area per unit crack
plane.

Close to the top of the shear crack, a wedge shaped concrete piece is assumed to break
out directly under the crack. Dowel action is modeled based on the assumption that the
reinforcement tie is clamped at the top and the bottom of this wedge. The relative displace-
ment between the two edges Δd, which can be calculated from the three parameters of the
3PKT, causes a clamping moment at both ends. Based on a linear moment profile over the
distance lk = lk1 + lk2 (see also Figure 5.1b) between the two clamped ends the resulting
dowel action force Fd can be calculated:

Fd = nbl
12Esπd

4
bl

64l3k
Δd ≤ nblfye

d3bl
3lk

(5.4)

where nbl is the number of longitudinal reinforcement bars, dbl their diameter and fye is the
effective steel yield stress defining the upper limit of the stress that contributes to dowel
action. If there is no tensile stress in the bars fye equals the yield stress fy, and if the bars
are yielding in tension fye is zero. Generally, Fd is assumed to be relatively small compared
to other components, especially as the longitudinal strain in the reinforcement increases
towards the yield strain.
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The transverse reinforcement is assumed to be activated in between this just mentioned
wedge shaped piece of concrete and the critical loading zone. Its average strain over a
base length of 0.9d, εv, is calculated from the horizontal displacement components in the
cracks below the main shear crack and that shear crack itself. The stress fv is calculated
from εv based on a bilinear stress-strain relationship with strain hardening. With this stress,
the force in the transverse reinforcement, Fs, follows as:

Fs = �vb(d
′ cot θ − lk1 − 1.5lb1e)fv (5.5)

where lb1e is the characteristic length of the CLZ which will be discussed in more detail in
the following paragraphs and Section 5.6.

The reaction force of the critical loading zone FCLZ is calculated from the concrete com-
pression strain εCLZ in the CLZ. To calculate this strain, the displacement component in
direction of FCLZ is distributed over a base length of 3lb1e cosα. The average stress cor-
responding to εCLZ is calculated based on a modification of Popovics stress-strain relation
[58]. With this average stress fc,avg, the resulting force FCLZ follows as:

FCLZ = αlb1ebfc,avg(εCLZ) (5.6)

The vertical force component of the longitudinal reinforcement in the CLZ which is in com-
pression, Fsc, is calculated from the vertical strain component of the CLZ. Depending on
the displacements and rotation of the rigid body, the CLZ might be pushed against the bot-
tom face of the shear crack. In this case the force Fcf develops, which is the resultant of the
contact force perpendicular to the crack and the corresponding friction force. To compute
the friction component, a friction coefficient of μ = 0.7 is used.

The compression strains and stresses in the cracked part under the shear crack are cal-
culated based on a section analysis in which the curvature is determined by equilibrium
and the strain of the longitudinal reinforcement tie. Despite the use of this simple anal-
ysis procedure to calculate the stresses, sections are not assumed to remain plane. As
mentioned previously, the region under the shear crack is assumed to be cracked radially
and the cracks are hence all directed towards the compression zone. Therefore, the force
in the compression zone Fc is not assumed vertical, but its inclination is obtained from
equilibrium.

Because of the mechanism underlying the 3PKT, the theory is only applicable if the trans-
verse reinforcement tie is predicted to yield before the longitudinal tie. If the longitudinal
reinforcement tie is the one that yields first, the behavior is of a more flexural type with sig-
nificant deformations in the fan below the shear crack and little opening of the shear crack
itself. This means that in the corresponding physical pier predominantly flexural cracking
is expected while shear cracks, if they develop, are expected to open little. One needs to
keep in mind that the longitudinal reinforcement tie in the 3PKT represents half the total
longitudinal reinforcement and yielding of this tie thus corresponds to a state in which the
strain of half the reinforcement on average exceeds yield strain. This is not to be confused
with the first or nominal yield used in the plastic hinge model, which refers to the strain of
the outer reinforcement bars only.

5.2.3 Failure mechanism

Looking at the assumed kinematics and force components also helps understanding the
failure mechanism generally predicted by the 3PKT. Initially, cracks develop and open grad-
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ually with increasing elongation of the transverse and longitudinal reinforcement. With
increasing transversal load and reinforcement stresses, the reaction force of the CLZ in-
creases as well. Thus, some part of the applied shear force is resisted directly by the CLZ,
i.e. by a mechanism comparable to direct strut action. When the CLZ enters the post-peak
range the resistance degrades but the deformations continue to grow. This leads to an
increasing sliding deformation along the shear crack which causes an increased aggregate
interlock force. At first, this increase of aggregate interlock force compensates for the loss of
resistance of the CLZ. However, as displacements and rotations get larger the shear crack
opens further. With growing crack width and sliding deformations the aggregate interlock
component eventually decreases as well, which causes failure of the wall. Even though the
mechanism is generally similar for all walls failing in shear, the ratio of the force resisted by
the CLZ depends strongly on the wall geometry, for instance. Squad walls transfer a much
larger portion of the shear load directly through the CLZ than slender walls, which in turn
develop higher aggregate interlock forces.

A completely different failure mechanism might develop if the walls have sufficient reinforce-
ment which limits damage at the crack and in the CLZ. In this case, the compression zone
under the shear crack might crush in compression, which causes a rather brittle failure of
the wall.

5.3 Experimental database for comparison

The 3PKT was validated against a database of large-scale, single curvature tests on can-
tilever RC walls with rectangular cross section. As the 3PKT is based on the kinematics
resulting from the formation of a shear crack, a test series had to contain at least one test
unit failing along such a crack, i.e. exhibit tensile shear failure. Seven test series comprising
36 tests met the required criteria. The 3PKT was applicable to 28 out of those 36 tests,
meaning that in those cases the transverse reinforcement tie was predicted to yield before
the longitudinal reinforcement tie.

The maximum aspect ratio Ls/h included in the database corresponds to the upper limit
of 3.0 which is set for application of the 3PKT. If walls have higher aspect ratios, they are
expected to exhibit more flexural behavior and thus develop different kinematics than those
assumed in the 3PKT. With regards to the longitudinal reinforcement layout, both walls with
reinforcement that was evenly distributed or concentrated in the boundaries are included in
the database. In the latter case, they usually contain some confining reinforcement in the
boundary as well. Longitudinal reinforcement ratios ranged from �l = 0.8% to 3.33% in the
database. The reinforcement ratio was calculated as �l = 0.5As/(0.5bh) where 0.5As is the
sum of the longitudinal reinforcement in half the cross section. Except for wall S10 [88],
which was tested monotonically and had a larger amount of reinforcement at the tension
side, this corresponds to the longitudinal reinforcement ratio calculated as �l = As/(bh). If
this total reinforcement ratio differs from the longitudinal reinforcement ratio in the web �l,web

according to Table 5.1, reinforcement is concentrated at the boundaries. The transverse
reinforcement ratios in the database vary between �v = 0% and 1.04%. With regard to the
material properties, normal strength concrete with compression strengths between 14 MPa
and 56 MPa and reinforcing steel with yield strengths between 384 MPa and 719 MPa were
used. Table 5.1 summarizes the tests included in the database.
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Table 5.1: Database for validation of the 3PKT.

Geometry Concrete and reinforcement n =

Test b h Ls/h �l �l,web fyl �v fyv fc P/(bh)

unit [mm] [mm] [-] [%] [%] [MPa] [%] [MPa] [MPa] [-]

[1]

VK1 350 1500 2.20 0.82 0.82 515 0.08 518 35 0.07

VK3 350 1500 2.20 1.23 1.23 515 0.08 518 34 0.07

[3]

VK6 350 1500 3.00 1.23 1.23 521 0.08 528 44.4 0.06

VK7 350 1500 2.20 1.23 1.23 521 0.22 528 30 0.08

[90]

WS2 80 500 2.40 3.33 0.42 536 0.3 719 36 0.00

WS4 80 500 2.40 3.33 0.42 536 0.3 719 36 0.00

[88]

S4 100 1180 1.12 1.05 1.05 574 1.03 574 32.9 0.07

S9 100 1180 1.12 0.99 0.99 560 0 29.2 0.08

S10 100 1180 1.12 2.91 1.00 513 0.98 496 31.0 0.07

[91]

Wall1 100 2000 0.58 0.80 0.704 435 0.369 425 25.0 0.00

Wall2 100 2000 0.33 0.80 0.704 435 0.369 425 22.0 0.00

[14]

72 160 1700 1.00 1.54 0.5 384 0.26 427 17.6 0.11

73 160 1700 1.00 1.54 0.5 384 0.26 427 21.2 0.09

74 160 1700 1.00 1.54 0.5 384 0.52 430 21.2 0.09

75 160 1700 1.00 1.54 0.5 384 0.52 430 14.0 0.14

76 160 1700 1.00 1.54 0.5 384 1.04 423 15.0 0.13

77 160 1700 1.00 1.54 0.5 384 1.04 423 18.7 0.11

78 160 1700 1.00 0.91 0.5 390 0.52 429 21.2 0.09

79 160 1700 1.00 0.91 0.5 390 0.52 429 14.0 0.14

80 160 1700 1.00 0.91 0.5 390 1.04 423 15.0 0.13

81 160 1700 1.00 0.91 0.5 390 1.04 423 18.7 0.11

82 160 850 2.00 2.31 0.4 388 0.52 430 21.2 0.09

83 160 850 2.00 2.31 0.4 388 0.52 430 18.2 0.11

84 160 850 2.00 2.01 0.4 385 0.52 423 18.2 0.11

85 160 850 2.00 2.01 0.4 385 0.52 423 21.2 0.09

[92]

SW4 60 600 2.10 2.82 0.31 500 0.39 545 36.9 0.00

SW5 60 600 2.10 3.01 0.47 535 0.31 400 31.8 0.00

SW6 60 600 2.10 2.82 0.31 500 0.31 400 38.6 0.00

SW7 60 600 2.10 3.01 0.47 535 0.39 545 32.0 0.00

SW8 60 600 2.10 2.93 0.31 430 0.42 400 45.8 0.00

SW9 60 600 2.10 2.93 0.31 430 0.56 400 38.9 0.00

[89]

RW1 150 1220 2.00 1.29 0.27 470 0.27 515 48.0 0.07

RW2 150 1220 2.00 2.89 0.62 470 0.62 440 48.0 0.07

RW3 150 1220 1.50 1.32 0.33 469 0.33 515 48.0 0.08

RW4 150 1220 1.50 2.59 0.74 469 0.74 440 56.0 0.06

RW5 150 1220 1.50 2.51 0.62 470 0.62 440 56.0 0.02

continued on next page...
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Table 5.1: Continued from previous page

Geometry Concrete and reinforcement n =

b h Ls/h �l �l,web fyl �v fyv fc P/(bh)

[mm] [mm] [-] [%] [%] [MPa] [%] [MPa] [MPa] [-]

Max. 350 2000 3.0 3.33 1.23 574 1.04 719 56 0.14

Min 60 500 0.33 0.80 0.27 384 0 400 14 0

Note: The names of the walls tested by [89] correspond to the original names as follows: RW1:
RW-A20-P10-S38, RW2: RW-A20-P10-S63, RW3: RW-A15-P10-S51, RW4: RW-A15-P10-S78, RW5:
RW-A15-P2.5-S64

The first four test units VK1-VK7 [1, 3] listed in the table are the same ones as previously
used for the study on plastic hinge modeling in Chapter 3. Only the four test units with con-
tinuous reinforcement will be considered for the comparison with the 3PKT, as the test units
with lap-splices develop different kinematics. Several failure modes were observed in these
four tests. VK1 and VK3 both failed in shear and VK3 did so in a relatively brittle manner
at a significantly lower drift than VK1. The more slender VK6 generally showed a more
flexural behavior and eventually failed in a shear-flexural mode characterized by a loss of
compression zone and significant deterioration in the lower part of the inclined cracks. VK7
on the contrary failed in flexural compression. Due to the higher transverse reinforcement
ratio, which was sufficient to resist the shear force corresponding to the moment capacity,
the diagonal cracks opened relatively little during the test.

Walls WS2 and WS4 [90] were not capacity designed either, but the longitudinal reinforce-
ment was concentrated at the boundaries and not evenly distributed. Both tests were run
in 1:3 scale with equal wall layout. The difference in the tests was the loading velocity:
WS2 was loaded with displacement velocities of up to 5mm/min and WS4 was subjected
to faster loading rates of up to 24mm/min. Both walls eventually failed in shear along a
diagonal crack at approximately the same top displacement.

Different failure modes were observed for the three monotonically tested rectangular walls
of the test series conducted by [88]. Walls S4 and S9 developed a shear crack pattern
but the failure clearly concentrated in one crack only in wall S9, which had no transverse
reinforcement at all, while several cracks opened in S4. Test unit S10 had a high longitu-
dinal reinforcement ratio in the boundary element in tension and could thus develop high
forces at the tension side. Yielding of this reinforcement only started right before diagonal
compression failure occurred.

Two very short walls with aspect ratios Ls/h ≤ 1.0 and very long cross sections (h/b = 20)
were tested by [91]. Web reinforcement was relatively low also in this case and the bound-
aries were confined. Both walls were subjected to cyclic loading. For the more slender
Wall1 a significant movement of the triangular part above the shear crack is reported be-
fore failure, which is caused by crushing of the concrete at both corners of this triangle and
significant displacements along the shear crack. However, yielding of half the vertical rein-
forcement and significant opening of the basecrack were already observed at less than 1/3
of the displacement at failure. Wall2 first developed some diagonal cracks and eventually
also slid significantly along the construction joint at the base.

Some wall tests with varying slenderness and reinforcement layouts were summarized by
[14]. All of the ones with rectangular cross section, that were hence considered in the
database, had longitudinal reinforcement that was concentrated in the boundary regions
of the walls. Two walls with the same layout were tested each time which means that the
part of the test series that was considered herein comprises 14 tests with seven different
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VK3

VK6

WS4
S9 SW5

Figure 5.2: Illustration of shear cracks which cause failure of test units VK3 [1], VK6 [3], WS4 [93], S9 [88]
and SW5 [92] drawn to scale 1:50.

layouts. According to the plots of the crack pattern provided in the report [14], some walls
showed a failure that concentrated in one diagonal crack (tests no. 72 & 73) while others
also showed some damage in compression at the base of the pier (test no. 82). Other
series of walls with confined boundary elements were tested in cyclic loading by [92] and
[89] which showed failure modes that were similar to those that were previously described.

To illustrate how the crack formation and damage in the physical test corresponds to the
idealized deformation assumed in the 3PKT; as well as to show the different dimensions of
the test units in this database, the shear crack which eventually caused failure is drawn to
1:50 scale in Figure 5.2 for five out of the 28 test units.

5.4 Validation of the 3PKT

The database introduced in the previous section is used to validate the 3PKT. As outlined
in Section 5.2, a key parameter of the 3PKT is the so-called “critical loading zone” at the tip
of the rigid body above the shear crack. So far, the size of this critical loading zone is a free
parameter for which a relation needs to be established. For a first validation of the 3PKT
this parameter was chosen so that the measured load-deformation responses of the test
units were captured best. That means this one parameter was determined according to the
available experimental results, while all other relations for the remaining force components,
as well as all the corresponding strains and displacements were calculated according to
equations and assumptions presented in Section 5.2. As the length lb1e, which determines
the size of the critical loading zone, usually turned out to be very similar for all specimen
of one test series, the same length lb1e was used for all of them in another step of the

September 2014 153



662 | Seismic Safety of Existing Bridges - Cyclic Inelastic Behaviour of Bridge Piers

validation. The data in the graphs presented in this and the following section stem from the
second step of the validation procedure.

Table 5.2: Experimental results and 3PKT predictions.

Experiment 3PKT Vmax δult

Test Vmax Vult
1 δult

1 lb1e,TU
2 lb1e

2 Vmax Vult
3 δult

3 Exp
3PKT

Exp
3PKT

unit [kN] [kN] [%] [mm] [mm] [kN] [kN] [%] [-] [-]

[1]

VK1 729 583 1.90 320 320 698 558 1.91 1.04 1.00

VK3 879 703 1.35 300 320 868 694 1.74 1.01 0.77

[3]

VK6 666 533 2.24 320 320 655 524 2.33 1.02 0.96

VK7 877 701 2.25 320 320 881 705 2.19 1.02 1.03

[90]

WS2 137 109 2.14 180 180 136 109 2.23 1.00 0.96

WS4 130 104 2.24 180 180 136 109 2.23 0.96 1.00

[88]

S4 392 314 - 3PKT not applicable

S9 342 292∗ 0.80∗ 250 250 334 292∗ 0.94∗ 1.02 0.85

S10 670 643∗ 0.92∗ 250 250 673 643∗ 0.92∗ 1.00 1.00

[91]

Wall1 540 432 1.50 3PKT not applicable

Wall2 684 547 1.48 280 280 693 554 1.34 0.99 1.11

[14]

72 825 660 - 300 220 714 571 0.67 1.16 -

73 740 592 - 200 220 756 605 0.64 0.98 -

74 830 664 0.89 200 220 878 702 0.75 0.95 1.18

75 825 660 - 220 220 788 630 0.88 1.05 -

76 820 656 1.25 3PKT not applicable

77 930 744 - 3PKT not applicable

78 700 560 - 3PKT not applicable

79 630 504 - 200 220 626 501 1.14 1.01 -

80 720 576 - 3PKT not applicable

81 775 620 - 3PKT not applicable

82 328 262 - 200 220 349 - - 0.94 -

83 340 272 - 200 220 346 - - 0.98 -

84 330 264 - 220 220 312 - - 1.06 -

85 375 300 - 200 220 316 - - 1.19 -

[92]

SW4 107 102∗∗ 1.73∗∗ 150 130 105 99∗∗ 1.82∗∗ 1.02 0.95

SW5 113 90 0.95 90 130 121 97 1.12 0.93 0.85

SW6 113 90 1.67 130 130 104 83 1.78 1.08 0.94

SW7 127 102 1.77 180 130 123 113∗∗ 1.39∗∗ 1.03 1.27

SW8 94 90∗∗ 2.00∗∗ 100 130 104 102∗∗ 2.46∗∗ 0.90 0.82

SW9 103 82 2.04 125 130 103 102∗∗ 2.02∗∗ 1.00 1.01

[89]

RW1 459 367 3.14 3PKT not applicable

RW2 730 584 2.99 350 300 722 578 1.64 1.01 1.83

RW3 589 471 3.30 300 300 605 484 3.50 0.97 0.94

continued on next page...
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Table 5.2: Continued from previous page

Experiment 3PKT Vmax δult

Vmax Vult
1 δult

1 lb1e,TU
2 lb1e

2 Vmax Vult
3 δult

3 Exp
3PKT

Exp
3PKT

[kN] [kN] [%] [mm] [mm] [kN] [kN] [%] [-] [-]

RW4 841 673 2.97 270 300 865 793 1.61 0.97 1.84

RW5 665 532 2.42 300 300 746 746 2.16 0.89 1.12

Max. 930 744 3.30 350 320 881 793 3.50 1.19 1.84

Min 94 82 0.80 90 130 103 83 0.64 0.89 0.77

Avg. 1.01 1.07

COV 6.41% 26.8%

Note: The names of the walls tested by [89] correspond to the original names as follows: RW1:
RW-A20-P10-S38, RW2: RW-A20-P10-S63, RW3: RW-A15-P10-S51, RW4: RW-A15-P10-S78, RW5:
RW-A15-P2.5-S64
1 Generally Vult = 0.8Vmax. If sudden failure occurred at a higher load or a higher load ratio was
defined as ultimate state, this value and the corresponding drift are given instead.
2 lb1e,TU is the value that provided the best results for this test unit, lb1e the one with the best results
for the series.
3 In accordance with the experiments, 80% of the force or the load at sudden failure and the corre-
sponding drifts are provided.
∗ A residual load V > 80%Vmax was defined as failure and the provided drift corresponds to this
failure load.
∗∗ Load and corresponding drift at which sudden failure occurred.

Table 5.2 gives an overview over the 3PKT predictions. It summarizes the measured and
predicted peak loads and drifts corresponding to a 20% drop of load. The latter is here
referred to as ultimate state or displacement capacity in accordance with e.g. most drift
capacity models introduced in Section 4.2.2. If the test was stopped before the load had
dropped by 20% or if a sudden failure occurred, the corresponding drift value is marked in
the table with one or two asterisks, respectively. Also indicated are the test units for which
the 3PKT was not applicable because the longitudinal reinforcement tie was predicted to
yield first. In most cases, the included drift values were obtained from the hysteresis plots
in the corresponding reference. In [1, 3] they are corrected for the rotation of the foundation.
The drift values of [88] were corrected for foundation rotation according to the procedure
outlined in [88]. For all other test units, either no specific information is provided regarding
the rotation of the foundation or it was not measured. If the test was stopped without any
further explanation before the load had dropped by 20%, i.e. if it is unknown whether failure
occurred or the test was stopped for another reason, the ultimate drift is not reported in
Table 5.2 (indicated with a dash).

Figure 5.3 compares the predicted load-deformation relationships of some of the test units
listed in Table 5.2 with the measured ones. Figure 5.3a shows the envelopes of the posi-
tive loading direction of the four test units with continuous reinforcement reported in [1, 3]
compared to the corresponding predictions. One can see that the peak load as well as the
degrading branch are captured very well in most cases. Only the drift capacity of VK3 is
slightly overestimated because the CLZ size that matched the entire test series best is a bit
larger than the optimum fit for VK3. All 3PKT predictions are plotted up to δult, i.e. the drift
corresponding to a 20% drop of shear capacity.

Figure 5.3b contains only two test units of the series by [88], because the 3PKT was not
applicable to the third one of the series. For the third test unit, the longitudinal reinforce-
ment was predicted to yield before the transverse reinforcement. For each test unit, two
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Figure 5.3: Comparison of load-deformation relationships predicted with the 3PKT and experimental data.

experimental envelopes are shown: One original envelope (index exp,orig), which uses
the deformations provided in the report and one envelope corrected for the rotation of the
foundation as explained previously (index exp,cor ). In the test report [88], data plots were
provided up to the point at which the force dropped by about 10%, which was defined as
failure in Table 5.2. However, the descriptions of the testing provide force and displacement
values measured after failure. As the measurements that are necessary to correct for the
rotation were not provided after failure, only an approximate correction using the data from
the ascending branch was made and the graphs are plotted with dashed lines. Again, one
can note that force and deformation capacity are well predicted by the 3PKT. The drift ca-
pacity of S10, corresponding to 96% of the peak load, is predicted very well, whereas the
drift capacity of S9 is overestimated by 19%. Besides the prediction according to the 3PKT,
this plot also contains predictions made with Response-2000 [94], annotated with “R2K”.
The latter may be used to better estimate the pre-peak part of the response, as the 3PKT
may underestimate the stiffness at this stage due to the underlying kinematics based on
the fully developed shear crack. In the other plots, this prediction of the initial response has
not been included to improve readability of the graphs containing the results of four test
units.
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Figure 5.3c shows the results for some of the test units by [92]. Crushing of the core con-
crete is reported for test unit SW4 during the cycles with peak displacement Δ = 24mm →
δ = 1.9% and the hysteresis is provided up to a drift of δ = 1.74%, which indicates that
the displacement amplitude δ = 1.9% had not been reached in the cycle in which failure
occurred. The 3PKT predicts a different failure mechanism with rupture of the transverse
reinforcement at δ = 1.82%, which corresponds well to the measured drift capacity. Tests
SW8 and SW9 were stopped due to considerable concrete damage. Also the 3PKT pre-
dicts failure due to flexural crushing. Test unit SW5 developed large shear cracks which
eventually caused failure and the crack plots also show significant deterioration around the
crack tips. According to the 3PKT, degradation initiates with degradation of the CLZ, which
is immediately followed by decrease of the Vci component. Hence, also in this case, the
failure mode and the displacement capacity are well captured.

No description of failure modes is available for the tests summarized by [14]. However, the
crack plots indicate a concentration of damage in one shear crack for test unit no. 73 and
distribution of damage over several cracks for test unit no. 74. The more slender units no.
82 and no. 85 both developed shear cracks and showed crushing of the concrete at the
base. Degradation along the shear crack is also predicted for test units no. 73 and 74,
which is again triggered by a decrease of capacity of the CLZ. A similar failure mode is
predicted for test unit no. 82. However, the shear resistance of the CLZ, VCLZ , is much
higher than Vci in this case, whereas it was similar to Vci for the two more slender test units.
Also for test unit no. 85, the ratio of the load resisted by VCLZ is predicted to be rather large
whereas Vci is almost negligible and failure is predicted to occur due to flexural crushing of
the concrete at the base section.
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(b) Ratio of experimental to predicted drift corre-
sponding to 20% drop of resistance.

Figure 5.4: Comparison of 3PKT prediction with experimental data.

Figure 5.4 shows the ratio of the experimental to the predicted peak load and drift capacity
of all test units. As before, the drift corresponding to a 20% drop of shear resistance was
defined as drift capacity. To have a clear definition and not include different criteria and
failure modes in one plot, only test units for which such a degradation occurred are included.
This means that sudden failures due to concrete crushing (i.e. SW4, SW8, SW9 [92]), which
may also be well predicted, as shown in Figure 5.3, are not included. Furthermore, tests
S9 and S10 [88], for which failure was reported but the provided hysteresis plots ended at
residual loads that were larger than 90% of the peak load, are not included.

Note that in two cases, namely walls RW-A15-P10-S78 and RW-A15-P2.5-S64 [89], the
20% drop occurred in the experiment but was not predicted by the 3PKT. However, RW-A15-
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P10-S78 did not degrade slowly but lost its capacity very rapidly. The 3PKT predicts failure
due to flexural crushing at about half the drift at which failure actually occurred, hence this is
one of the outliers in Figure 5.4b. Flexural crushing is also predicted for RW-A15-P2.5-S64
at about the drift at which the test unit did start to degrade in the experiment. For this test
series, only a conference paper is available at present and no detailed measurement data.
Hence, further investigations to find the source of these discrepancies could not be made.
As not all values listed in the table are included in the plot, the mean value and coefficient
of variation of the drift capacity is different than that provided in Table 5.2.

5.5 Influence of pier characteristics on response

5.5.1 Introduction

In the following sections, the influence of several structural characteristics on the behavior
of walls is examined. The focus therein lies on examining the influence of each parameter
on the deformation capacity, as this is the key value for displacement-based assessment.
Furthermore, potential effects on the shear strength and failure modes will be investigated
using the 3PKT.

5.5.2 Transverse reinforcement ratio

An important characteristic for the shear behavior of walls is their transverse reinforcement
content �v, which influences especially the deformation capacity. To investigate the effect
of �v on the behavior of walls, some of the tests reported by [14] as well as VK3 [1] and
VK7 [3] are considered.

Tests no. 72 to 77 had different transverse reinforcement ratios but were otherwise identical.
Two walls of each layout were tested in this campaign and walls no. 73 (�v = 0.26%), no.
74 (�v = 0.52%) and no. 77 (�v = 1.04%) will be considered for further comparison. Some
influence of �v is visible even in the crack patterns: While the damage of the test unit with
the lowest �v concentrates in one crack, more evenly distributed cracks are observed in
the other four cases. Generally, more compression damage of the concrete was observed
with higher �v. Very similar observations were made for test units VK3 and VK7. Failure
concentrated in one shear crack of VK3, whereas the shear cracks of VK7 opened only
little and the test unit finally failed in compression.

To study the influence of the transverse reinforcement content according to the 3PKT, sev-
eral analysis with varying �v were run for the considered piers with average material prop-
erties. Figure 5.5 shows the results of these analyses. As expected, the drift capacity is
strongly influenced by the transverse reinforcement ratio in each case. Especially the drift
capacity of the more slender test units (VK3 & VK7: Ls/h = 2.2) is predicted to increase
significantly if the transverse reinforcement ratio is increased. This is also supported by the
experimental data. On the contrary, the force capacity is not affected as much. Only at very
low transverse reinforcement ratios (from �v = 0.0% to �v = 0.08%) an increase in shear
resistance is observed for this wall layout. With very low ratios of �v the flexural capacity of
the wall can already be reached and hence no further increase of the force is possible.

The shorter test units No. 73, 74 and 77, on the other hand, typically fail before their
flexural capacity is reached. In Figure 5.5, the flexural capacity is attained only with the
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Figure 5.5: 3PKT analyses with varying transverse reinforcement ratios compared to experimental data.

highest reinforcement ratio of �v = 1.04%, but the 3PKT is not applicable for this �v because
the longitudinal reinforcement tie yields first. As the shear capacity is hence not limited
by the flexural capacity but by the shear capacity and thus the transverse reinforcement
ratio, an increase in �v does not only lead to an increased drift, but also to an increased
force capacity for these walls. Figure 5.6a shows the predicted development of crack width
and slip for the transverse reinforcement ratios that are also included in Figure 5.5. With
increasing transverse reinforcement ratio the opening of the crack and also the downwards
sliding, which eventually causes failure, are delayed. The highest transverse reinforcement
ratio prohibits almost any sliding and only permits limited crack opening.
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Figure 5.6: Crack development and drift capacity depending on transverse reinforcement content.

Figure 5.6b shows the drift capacity of the two considered wall layouts in dependence of
the transverse reinforcement ratio. For comparison, the drift capacity estimates according
to Equations (2.40) [24] and (4.11) [75] are also included in this figure. The drift capacity
according to Equation (4.10) [76] was derived using test data of columns with higher as-
pect and axial load ratio and could hence not be applied. The applied Equations (2.40)
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and (4.11) were originally developed to predict the deformation capacity corresponding to
a 20% drop of lateral load. According to the boundary values defined for certain character-
istics [75] is neither applicable to the short walls (“Hir”) nor to walls with �v < 1.0% (“VK”).
Even though the criteria of application are formally met for higher �v, one has to keep in
mind that the equation was derived from experimental data of columns and not of walls.
However, the trend of the drift capacity is well predicted with this model and similar to that
obtained with the 3PKT, but the drift capacities are about 30-40% larger than those calcu-
lated using the 3PKT. The drift capacity according to [24] matches well the experimental
data of the squat walls, but not that of the slender walls. It has been evaluated using a
confinement effectiveness factor of kcon = 0.3 for the squat walls, as detailed drawings of
the reinforcement layout were not available for these. For the walls with higher aspect ratio,
the factor turned out to be kcon = 0.4 according to the provided reinforcement. In both
cases, the mechanical reinforcement content in compression was assumed equal to that in
tension and the first term in brackets hence evaluated as f0.225

c . Furthermore, the average
material properties of the two tests of each set were used and the members were regarded
to be primary elements without seismic detailing. The different characteristics of the two
wall layouts, such as the distribution of the longitudinal reinforcement (equally distributed or
concentrated at the boundaries) and the slenderness, are not sufficiently taken into account
with this model, as evident in Figure 5.6. The 3PKT predictions agree well with the experi-
mental data of both test series on the other hand. Predictions are shown for all transverse
reinforcement ratios for which the 3PKT was applicable and the load eventually dropped by
20%. As indicated in the previous paragraph, the 3PKT distinguishes between shear failure
before and after reaching the flexural capacity and thus takes into account the behavior of
the walls in a more detailed way than the drift capacity models. It is therefore able to better
capture the different behavior of the two test series and thus also the difference in the drift
limits.

5.5.3 Aspect ratio

Besides the transverse reinforcement content, the aspect ratio Ls/h significantly influences
the behavior of walls. Both strength and deformation capacity are affected by changes of
Ls/h. This is due to a transition from a predominantly shear controlled behavior towards
a flexural behavior with increasing aspect ratio. To visualize the effect of a varying slen-
derness, three test units will be considered in the following: Test units VK3 [1] and VK6 [3]
for which the aspect ratio was the varied experimental parameter and test unit SW6 [92].
The first two test units (called VK in the following plots) had evenly distributed reinforce-
ment, low transverse reinforcement and an axial load ratio of n ≈ 0.07. The aspect ratio
has not been the only varied parameter in any other test series, hence only an analytical
investigation could be made using any other wall layout as basis. Wall SW6 was chosen
because, contrary to VK3 and VK6, it does not have an axial load and has its longitudinal
reinforcement concentrated in the boundaries.

Figure 5.7 shows the influence of the aspect ratio on the force-deformation response for
the selected test units. The increasing aspect ratio leads to a transition from a rather brittle
to a more ductile response. While the lateral load resistance decreases, the drift capacity
increases. The experimental data of VK3 and VK6 does not only support the predicted
trend but also the absolute values. One has to keep in mind, however, that the average
material properties were used which causes some variation in the predicted and measured
drift capacities. The measured envelope of SW6 is also well predicted and the predicted
trend due to a change in aspect ratio is similar as for VK3 & VK6.
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Figure 5.7: 3PKT analyses with varying aspect ratio compared to experimental data.
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Figure 5.8: Drift capacity and force components depending on aspect ratio.

However, as Figure 5.8a shows, the influence of Ls/h on the drift capacity differs for the
two layouts. The drift capacity is approximately the same up to an aspect ratio of about 1.5.
Between Ls/h = 1.5 and 2.0, there is a transition towards a more flexural behavior with a
significant increase of drift capacity in both cases. But while the drift capacity of the VK3
& VK6 layout increases with about the same gradient as it did for Ls/h < 1.5, the gradient
with which the capacity of SW6 increases is larger than before. These three test units, and
comparison with other test unit layouts not included in this section, show that the effect of
the aspect ratio on the drift capacity strongly depends also on other characteristics, such as
the distribution of the reinforcement. Contrary to the 3PKT, the equation of [24] predicts a
more steady increase of drift capacity over the entire range of considered aspect ratios. All
material values to evaluate this equation were taken from Table 5.1, the same assumptions
as in the previous Section 5.5.2 were made regarding the reinforcement ratios in tension
and compression and kcon was evaluated according to the reinforcement layout as 0.4 and
0.04 for VK3 & VK6 and SW6, respectively. Furthermore, the equation was evaluated for
primary elements without seismic detailing. Other drift capacity estimates introduced in
Section 4.2.2 are not included, as they are not applicable for the low aspect ratios.
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The change in the behavior with increasing aspect ratio can also be illustrated with the
force components predicted by the 3PKT. If the aspect ratio is low, the ratio of the load
that is carried by the critical loading zone VCLZ/V is relatively high for the layout of VK3 &
VK6, see Figure 5.8b. This indicates a high direct load transfer through the rigid body. As
the aspect ratio increases, the direct load transfer through the CLZ becomes less impor-
tant and a larger ratio of the force is transferred along the crack. Not only the aggregate
interlock force, which is included in Figure 5.8b, but also the friction force at the crack tip
increases significantly with Ls/h. This friction force does not occur in test unit SW6 as it is
not subjected to axial load. Concerning the aggregate interlock force and the resistance of
the CLZ, the trends are similar to that of VK3 & VK6 though. If the test unit is short, a high
ratio of the load is transferred directly through the critical loading zone, but with increasing
aspect ratio an increasing ratio of the force is transferred at the crack through aggregate
interlock.

5.5.4 Axial load ratio

Similarly to the study on the influence of the aspect ratio using SW6 [92], the influence
of the axial load ratio could only be studied analytically because none of the included test
series included the axial load ratio as a parameter. The rather slender test unit VK6 [3]
is chosen for the analytical study, because it illustrates well the effect that the axial load
ratio may have on the internal force distribution and the drift capacity. For comparison, the
influence of the axial load is also shown based on test unit S9, which has an aspect ratio of
only Ls/h = 1.12 and no stirrups.
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Figure 5.9: 3PKT analyses with varying axial load ratio compared to experimental data.

Figure 5.9 shows the influence of the axial load ratio on the force-deformation response
of test units VK6 and S9. In both cases, a similar behavior is observed: With increasing
axial load, the shear force capacity increases whereas the deformation capacity decreases.
Within the investigated range of axial loads, an asymptotic behavior is observed towards
the highest ratio n = 0.15. Figure 5.10 shows that the drift capacity only changes very
little for axial load ratios that are higher than about 0.1. Also the shear force resistance
increases at a much lower rate than before from approximately this axial load ratio on.

Initially, an increasing axial load causes a strong decrease of drift capacity, except for n ≤∼
0.02 for VK6, which does not influence the drift capacity much, see Figure 5.10. Towards
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Figure 5.10: Drift capacity depending on axial load ratio.

an axial load ratio of n ≈ 0.1, the influence of the axial load reduces and the drift capacity
approaches a kind of lower bound value. From about this load ratio on (VK6: n = 0.11,
S9: n = 0.09), the yield strain of the longitudinal reinforcement is no longer reached and
the behavior thus more shear controlled. Also the crack angle does no longer change from
then on. While the crack angle has been controlled by the wall geometry in the case of S9,
it has been getting steeper with increasing load in the case of VK6 up to n = 0.11 when it
reached its final value of θ = 29◦. Figure 5.11 shows that along with this steepening of the
crack angle goes an earlier increase of crack width and slip.

As evident in Figure 5.10, the 3PKT predicts a much stronger dependence of the drift
capacity on the axial load than Equation 2.40 of EC8-Part 3 [24] does. The latter estimates
a more steady decrease of drift capacity with increasing axial load. At low axial load ratios,
the drift capacity according to [24] is much lower than that according to the 3PKT, but
from around n = 0.08 onwards, they are similar. Equation (2.40) is again evaluated for
primary seismic elements, assuming that no seismic detailing is provided. The confinement
effectiveness factor of VK6 was calculated as kcon = 0.4 whereas S9 did not have any
transverse reinforcement and hence the corresponding exponent is zero.

As mentioned previously, failure of the test units is initiated when the concrete in the CLZ
crushes and the rigid body starts sliding down the crack. With increasing axial load ratio,
this mechanism initiates at lower drifts. This trend can be well illustrated by looking at
the force components and the development of the displacements – width and slip – at the
crack of VK6. Figure 5.11 shows these for the axial load ratios that mark significant points
in Figure 5.10. One can see that with increasing axial load the shear resistance due to
aggregate interlock Vci and friction Vcf become more important. The aggregate interlock
component increases because the sliding displacement grows faster than the crack width
with increasing n. The increase of the friction component hints at an increasing contact
force between the tip of the rigid body and the fan below the crack. Besides the force
components acting at the crack, the behavior of the CLZ is also strongly influenced by
n. With increasing axial load, the peak of the CLZ is reached earlier and thus also the
decrease of VCLZ starts earlier. Similar trends concerning VCLZ are observed for S9.
However, as this test unit does not have any stirrups and is rather short, Vs and Vcf are
almost zero. Therefore, the CLZ carries almost the entire load at low axial load ratios. With
increasing axial load, the slip increases faster than the width which causes an increasing
aggregate interlock force.
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Figure 5.11: Force ratios and development of displacements at the crack for VK6 with varying axial load
ratio.

5.5.5 Longitudinal reinforcement ratio

The effect of the longitudinal reinforcement ratio �l is examined based on test units VK1 &
VK3 [1, 3] and SW5 & SW6 [92]. For the former pair of test units, �l was the only varied
parameter. The longitudinal reinforcement was evenly distributed around the cross section
and hence the location of the reinforcement tie in the 3PKT, merely varied slightly. Contrary
to this, the distribution of the reinforcement was changed besides the reinforcement content
in walls SW5 and SW6. In test unit SW6, a large portion of the longitudinal reinforcement
was concentrated in the boundary elements and hence its static height d was larger than
that of SW5. Furthermore, the concrete strengths of SW5 & SW6 were subject to larger
variation (fc,SW5 = 31.8MPa, fc,SW6 = 38.6MPa) than that of VK1 & VK3 (fc,VK1 = 35MPa,
fc,VK3 = 34MPa). These differences need to be kept in mind when interpreting the re-
sults, which are consequently influenced by several parameters. Despite this, the test units
were deemed suitable to qualitatively illustrate potential effects of changing longitudinal re-
inforcement contents. All 3PKT calculations were made with average material properties
and average static height d of each pair of test units.

Figure 5.12 shows the predicted responses for selected reinforcement contents compared
to the measured force-deformation envelopes. Comparison to Figure 5.9 shows that the
effect of varying longitudinal reinforcement contents on the envelope is similar to that of
varying axial load: With increasing �l the resistance of the test unit increases and the
deformation capacity decreases. This effect seems straightforward considering the forces
acting on the rigid body, see Figure 5.1b. An increased reinforcement content leads to an
increased vertical force acting on the rigid body, but with a line of action which is shifted
with relation to that of the axial load.

The effect of �l on the internal force distribution is nevertheless slightly different than that
of n. An increased reinforcement content does not cause any additional contact force at
the tip of the rigid body, and Vcf is hence not affected as much as it was the case for an
increasing axial load. But, similarly to what was observed for an increasing axial load, the
peak load of the CLZ is attained at lower drifts with increasing �l. Thus, with increasing �l
the downwards sliding of the rigid body and the increase of Vci initiate earlier. The higher
shear capacity with higher �l is due to an increased aggregate interlock component for

164 September 2014



662 | Seismic Safety of Existing Bridges - Cyclic Inelastic Behaviour of Bridge Piers

0 0.5 1 1.5 2
0

200

400

600

800

1000

1200

Drift δ [%]

Sh
ea

r
fo

rc
e

V
[k

N
]

 

 

�l = 1.52%
�l = 1.23%

�l = 0.82%

�l = 0.44%VK1 �l = 0.82%

VK3 �l = 1.23%

3PKT

(a) VK1 & VK3 [1, 3]

0 0.5 1 1.5 2
0

50

100

150

Drift δ [%]

Sh
ea

r
fo

rc
e

V
[k

N
]

 

 
�l = 3.61% �l = 3.01%

�l = 2.82%

�l = 2.22%

SW5 �l = 3.01%

SW5 �l = 2.82%

3PKT

(b) SW5 & SW6 [92]

Figure 5.12: 3PKT analyses with varying longitudinal reinforcement ratio compared to experimental data.
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both test unit layouts, which was also observed for n. While the magnitude of Vci as well as
its relative contribution to the resistance Vci/V increase significantly, its degradation also
starts at lower drift ratios. As failure of the test unit is typically triggered by the degradation
of aggregate interlock, the drift capacity is thus reduced.

Figure 5.13 shows the drift capacity of the walls in function of �l according to the 3PKT.
Initially, there is a relatively strong decrease of drift capacity with increasing �l. For rein-
forcement ratios lower than about 1.7%, no degradation of shear resistance was predicted
for the wall layout by [92] but the analysis suddenly stopped due to rupture of the longitu-
dinal reinforcement. The displacement corresponding to this failure is also very dependent
on the ultimate strain of the steel and is therefore not included in the plot. With increas-
ing ratios a significant drop of drift capacity is observed initially before the effect of �l on δ
weakens with a further increase of �l. According to the 3PKT, there is even a slight reverse
in the trend for very high reinforcement ratios. This phenomenon occurs because crack
width and slip develop in such a way that the aggregate interlock component decreases
more slowly than for lower �l. This trend cannot be validated by experimental data, but also
the drift capacity estimate according to Equation (4.11) predicts a slight change in the trend
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from around the same �l as the 3PKT. However, one needs to keep in mind that the high
ratios for which this reverse in trend occurs are relatively rare and these are thus rather
theoretical examples. The drift capacity according to Equation (4.11) does not directly in-
clude an influence of �l but accounts for the shear stress applied to a section. It was here
evaluated using the maximum resistance as predicted by the 3PKT for each �l. The trend
predicted with this formulation is somewhat similar to that of the 3PKT, especially for the
VK1 & VK3 layout, but the predicted capacities themselves are higher. The drift capacity
according to EC8 Part 3, Equation (2.40), does not account for any influence of the longitu-
dinal reinforcement ratio and is included in Figure 5.13 using the average properties of the
considered test units.

The experimental data supports the trends predicted with the 3PKT. According to this data,
the effect of the longitudinal reinforcement is even a bit stronger than predicted. However,
one needs to keep in mind that predictions were made based on average values of the
material properties and of the static height. While the drift ratio of VK1 (�l = 0.82%) is
well captured, that of VK3 (�l = 1.23%) is a bit overestimated. The data of SW5 and SW6
seems to imply a much stronger influence of �l than predicted. However, as mentioned
also the static height d and the concrete strength vary significantly between the two test
units. According to the 3PKT, the concrete strength has a considerable influence on the
drift capacity, as the strength of the critical loading zone and consequently the drift at which
it enters the post-peak range depend on fc. Due to these changes between the two test
units, the behavior is influenced by more than one parameter and while the included data
illustrates a trend, the absolute values cannot be compared with the predictions. Compari-
son of the experimental data with the drift estimates according to Equation (2.40) and (4.11)
shows that with the former, which does not account for �l, drift capacities in between the
actual ones are predicted. The latter does predict a decreasing trend with increasing �l but
overestimates the capacity of all the test units.

5.6 Critical loading zone CLZ

5.6.1 Influence of size of the CLZ on the response

As outlined in Section 5.2.3, the behavior of the critical loading zone influences the behavior
of walls especially with regards to their failure mechanism. The degradation of the CLZ and
thus of the degradation of what can be considered a direct strut mechanism leads to sliding
of the rigid body down the crack. As the CLZ and the aggregate interlock are the main load
bearing components in vertical direction, the degradation of these equals the degradation
of axial load bearing capacity, which can be considered a total failure of the structure.

This far, the size of the CLZ was a parameter which was determined from the available ex-
perimental responses of the walls. Generally, two observations can be made regarding the
choice of the size of the CLZ: For relatively squat walls (Ls/h ≤∼ 1) the direct load transfer
via the CLZ constitutes a significant part of the total load transfer. An underestimation of
the actual size of the critical loading zone thus leads to an underestimation of the shear
resistance of the structure, see Figure 5.14a. The 3PKT model would in this case start to
degrade at drifts at which in reality the peak load is not yet reached. Thus, both the shear
strength and the drift capacity are likely to be underestimated.

On the contrary, if the wall is slender (Ls/h ≥∼ 2), the contribution of the CLZ to the shear
resistance constitutes a smaller part than for squat walls whereas the aggregate interlock
gains in importance. If the CLZ is chosen too small in this case, its degradation might
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initiate at smaller drifts which does not yet trigger failure, but an increase in aggregate
interlock force. However, while the aggregate interlock initially compensates for a lower
force capacity of the CLZ, an earlier activation of the aggregate interlock mechanisms also
causes an earlier degradation of Fci. In other words, if the downward sliding of the rigid
body commences earlier, it will also grow too large and cause failure earlier. Hence, for
slender walls, the choice of the size of the CLZ influences mainly the drift at which the total
shear resistance of the structure starts to degrade and not so much the shear strength, see
Figure 5.14b.

5.6.2 Relation of the size of the CLZ to various parameters

a Experimental observations

If the 3PKT shall be used for predicting the load-deformation response of bridge piers, a
formulation to predict the size of the CLZ based on the characteristics of the pier must be
found. To obtain a relation for the characteristic length lb1e which defines the size of the
CLZ, potential influences of some pier characteristics on the development of the size of the
CLZ were examined. Figure 5.15 shows the compression zone of test unit VK6 [3] in the
first, i.e. positive, loading direction. The extent of the critical loading zone, as it is obtained
by fitting of the test results, is shaded in Figure 5.15a and the shear crack leading to failure
is indicated as well. One can note that in this case, the angle of the crack is predicted very
well and the size of the CLZ corresponds approximately to the area over which compression
cracks are distributed.

Even though not all test units develop such a clearly visible triangular damage area, the CLZ
can generally be regarded as the volume in which the damage of the part of the wall above
the shear crack eventually concentrates. The following sections give an overview over
the parameters that were estimated to potentially influence the size of the CLZ and show
their relation to the actual characteristic length lb1e determined from the experimental load-
deformation response. Note that, to have as little bias originating from other assumptions as
possible, the length lb1e,TU , which is individually determined for each test unit, is considered
to find a relation for lb1e. However, as previously indicated, lb1e is relatively constant for all
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Figure 5.14: Influence of the size of the CLZ on the response of a slender and a squat wall.
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(a) Load step corresponding to drift δ =
2.2%

(b) Load step corresponding to drift δ =
2.6%

Figure 5.15: Photos of the compression zone of of test unit VK6 [3] with shaded area indicating assumed
critical loading zone CLZ.

walls tested within one series, except for two test series ([92, 89]). For a better comparison,
the lb1e with which all results of a test series were captured best on average is included in
all following plots as well.

b Reinforcement content and layout

The reinforcement in the CLZ was considered to be a potential influence for several rea-
sons. Both the longitudinal and the transverse reinforcement may act as confinement and
thus influence the distribution of damage in the compression zone. The transverse rein-
forcement may also anchor the CLZ in the fan underneath the shear crack and hence re-
strain the lateral movement of the CLZ. However, as Figure 5.16a clearly shows, no relation
between the transverse reinforcement and the size of the critical loading zone, represented
by lb1e, can be observed in the test data. The situation is not different if the size of the CLZ
is related to the longitudinal reinforcement content.

In analogy to the effect the loading plate has on the size of the CLZ of a deep beam, the
effect of the bending stiffness of the longitudinal reinforcement was examined. The bars
were regarded as cantilevers with a clamped bearing in the foundation that restrain the
lateral movement of the tip of the CLZ. In this respect, they would resemble a bearing plate.
The size of this virtual plate should be related to the bending stiffness of the bars. The
bending stiffness EI of a bar with diameter dbl is calculated as EI = Eπd4bl/64 = kd4bl,
with the constant value k = Eπ/64. Hence, if the size of the CLZ was related to EI, a
relation between lb1e and the stiffness of the reinforcement bars in the CLZ nblkd

4, where
nbl is the considered number of reinforcement bars, should be found. Generally, only the
outer layer of reinforcement bars was assumed to contribute to the stiffness, if the boundary
element was not confined by hoops. If there was confinement, it was assumed that the two
reinforcement layers coupled by hoops could only deflect in parallel and hence both layers
were considered. This was the case for Tran and Wallace’s walls [89] as well as for some
of Pilakoutas and Elnashai’s [92]. But Figure 5.16b clearly shows that there is no relation
between the lateral stiffness of the reinforcing bars and lb1e.
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Figure 5.16: Relation between the lb1e determined from the experimental response and some reinforcement
parameters.

Other reinforcement characteristics, such as bar spacing and buckling lengths, which could
influence the extend of the damaged area, were investigated as well and showed no corre-
lation to the actual size of the CLZ. Therefore one can say that, considering the currently
available data, no relation between any reinforcement parameters and the size of the criti-
cal loading zone can be established and the size of the critical loading zone must depend
on other parameters.

c Height of the damaged zone in compression

Even though the CLZ also deforms in lateral direction and does not have a constant area
throughout its height, it was considered that its damage could be compared to that of uni-
axial compression tests. Similarly to the localization of damage that can be observed for
some materials (e.g. steel) in tension, a concentration of damage has also previously been
observed for concrete in compression. To describe the softening behavior of concrete in
compression, [95] developed the “compressive damage zone model”, which is based on
the assumption that damage spreads only over a certain height in slender specimen. A
height of 2.5 times the width of the specimen was assumed for the damage zone. This
corresponds to the observation of [96] that the failure crack of concrete compression tests
tends to form at an angle of 22◦ (= arctan(1/2.5)).

If the critical loading zone would, despite its complex loading condition and its triangular
shape, form following the same rules, its size should be related to the width of the wall.
Figure 5.17 shows that the correlation is better than for the previously examined relations,
but still relatively weak. Hence, the assumption that the CLZ can be compared to the
damaged area in compression tests seems too crude.

d Geometrical relations

The idea to check a potential dependence of lb1e on the geometry of the walls is based on
considerations similar to those presented in the previous section, where the influence of
the width of the wall was looked at. Besides the two approaches mentioned in the previous
section, models based on fracture mechanics occasionally include the hypothesis that the
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damage area is proportional to a specific dimension, e.g. [97]. Even though no fracture
mechanics approach is chosen in the 3PKT or shall be included for the size of the critical
loading zone, the treated problems resemble each other. Fracture mechanics approaches
are sometimes employed if the concentration of damage within a larger volume has to be
described. Also for the 3PKT the dimensions of a small zone (i.e. the CLZ), in which the
damage of a larger volume (i.e. the rigid body) concentrates, are searched for. Besides,
the observation that lb1e usually turned out to be similar for test units of one test series
supports the idea that the size of the CLZ could be related to the geometry. By and large,
the dimensions of the test units within one series are the same provided the aspect ratio is
not a test parameter.

Furthermore, one can also assume that stresses and strains will spread under certain
angles and distribute over specific areas. This was already done for the 2PKT [12], where,
based on an analytical model of the crack tip, it was found that the stresses at the crack tip
concentrate over a length of 3lb1e cosα. Further up the crack the stresses in the rigid body
were found to level at a constant value. Hence, the expression 3lb1e cosα was chosen as
length for the critical loading zone in the 2PKT and kept in the 3PKT [13].
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Figure 5.18: Relation between lb1e/h and geometrical properties.
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Figure 5.19: Proposed linear relation between lb1e/h and h.

For these reasons, looking for a possible relation between lb1e and values representing
the geometry of the structure was deemed feasible. Figure 5.18 shows that the size of the
critical loading zone does indeed seem to depend on the dimensions of the test unit. In both
graphs, the dimensionless expression lb1e/h was used to examine possible correlations.
Both graphs indicate a linear relation for lb1e/h in dependence of h or Ls/h. However, the
graph showing lb1e/h against Ls/h contains one clear outlier: the length of the CLZ of the
shortest test unit in the database. Keeping also in mind that a larger ratio of the load is
transferred directly through the CLZ if the walls are short, it seems well possible that lb1e/h
is not linearly dependent on Ls/h but has a larger gradient at low Ls/h. However, as there
is only one data point below an aspect ratio of Ls/h = 1.0 it is hard to tell whether it is
an outlier or whether it indicates a changing trend for squat walls with aspect ratios below
1.0. Also the relation between lb1e,TU/h and h shows some more scatter for smaller section
heights h. However, all the walls with height h = 600mm belong to the same test series
[92] for which a larger variation with regards to the optimum lb1e values was noticed than
for most other test series. Whether that stems from scatter in the experimental results or
whether the walls vary in some characteristics that influence the length lb1e is difficult to tell.
Only the reinforcement layout was varied between the different test units, but, as shown
previously, no correlation between any reinforcement parameters and the development of
the CLZ was found. Thus it is assumed that scatter in the experimental results might be the
possible source of the variations at small h and that geometrical relations are, in light of the
limited amount of experimental data, suited to establish a relation for lb1e.

e Conclusions and proposed size of CLZ

As shown in the previous section, the dimensionless value lb1e/h and the height of the
section h seem to be linearly related, i.e. lb1e ∝ h2. Even though there is some scatter
associated to this relation, there is also reason to assume that at least some of that scatter
is due to variations in the available experimental data, as already indicated in the previous
paragraph. Generally, only hysteresis plots and photos or drawings of the crack patterns
were available but no local deformation measurements, close-up photos and detailed de-
scriptions of the tests. The latter was only available for the tests reported by [1, 3, 88].
Available experimental data of good quality is thus rather limited, which complicates a de-
tailed analysis of the critical loading zone.
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Figure 5.20: Comparison of 3PKT prediction using lb1e according to Eq. (5.7) with experimental data.

Given the limited extent of the database, it seems reasonable to establish a rather sim-
ple expression for lb1e as the data is not sufficient to validate more elaborate approaches.
Hence, the following linear approximation of lb1e/h dependent on h is proposed:

lb1e
h

= 0.33− 0.1h for 0.5m ≤ h ≤ 2.0m with h in m (5.7)

As Figure 5.19 shows, especially the values of lb1e, with which the responses of an entire
test series are captured best, are approximated well with the linear relation. This relation
should, as indicated in Equation (5.7), only be used for walls with depths between h = 0.5m
and h = 2.0m which corresponds to the range included in the database.

If the size of the critical loading zone is estimated according to Equation (5.7), the shear
strength of the walls is still very well predicted with an average ratio of experimental to
predicted peak load of 1.00 and a coefficient of variation of 6.7%, see Figure 5.20. As
expected, the agreement of the predicted drifts is worsened slightly with an average ratio
δ80%,exp/δ80%,pred of 1.25 and a coefficient of variation of 29.5%. However, as evident in
Figure 5.20, the large scatter is mainly due to three test units whose drift capacity was
underestimated by about 50%. Equally to what has been shown in Figure 5.4, a clear cut
regarding the drift corresponding to a drop to 80% of the force resistance was also made
for the data included in this plot. Thus, if the test was stopped before, the data was not
included. The drift capacities of test units for which less than 20% degradation of shear
force capacity was observed in the experiments, namely S9, S10 [88] and SW8, SW9 [92],
were predicted with an average ratio of 0.82, i.e. the drifts were overestimated by about
20% on average, and a coefficient of variation of 18.7%.

Regarding the outliers in Figure 5.20 the observations are similar to those made when
the optimum lb1e was used. All outliers result from the predictions for the walls of [89].
There were two test units whose drop to 80% of the load and the according drift capacity
was reached in the prediction: test units RW-A15-P10-S51 and RW-A15-P2.5-S64. RW-
A15-P10-S51 was predicted to fail in flexural crushing just before the load had dropped
20% at about half the drift at which degradation started in the experiment, so the drift
capacity was underestimated by 50%. Nevertheless, RW-A15-P2.5-S64 was predicted to
also fail in flexural crushing at approximately the drift at which the test unit did actually
degrade. However, the 3PKT does not capture the post-peak response if failure due to
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flexural crushing occurs but rather stops the analysis. Shear degradation was predicted
for another test unit, RW-A15-P10-S78, but at about half the drift at which it occurred in
the experiment. As mentioned previously, the differences between the predictions and the
experimental data could not be examined in detail, as sufficient measurement data to do
so is not available at present.

5.7 Conclusions

The aim of this chapter was to validate a three parameter kinematic theory for shear crit-
ical walls, previously developed by [13], against a database of 28 rectangular reinforced
concrete walls. This theory is based on the kinematics of walls exhibiting significant shear
cracking which eventually leads to failure. Hence, only series that contained at least one
test unit with such a failure mode were considered for validation. This led to a total num-
ber of 36 walls with varying characteristics that were initially considered. The transverse
reinforcement ratios of these walls ranged from 0% to 1.04%, normal force ratios from 0 to
0.14 and the aspect ratio from 0.33 to 3.0, which marks an upper bound for application of
the 3PKT. Yielding of the longitudinal reinforcement was predicted to occur before yielding
of the transverse reinforcement for eight of the walls, which results in a flexural mechanism
and renders the 3PKT inapplicable. The force-displacement response of the remaining 28
walls was predicted very well on average. Especially the prediction of the force capacity
agrees well with the experimental data with an average ratio of measured to predicted peak
load of 1.01 and a COV of 6.4%. Slightly more scatter is associated to the prediction of the
drift capacity corresponding to a 20% drop of lateral load bearing capacity with an average
ratio of 1.14 and a COV of 26.6%. However, especially in light of the scatter associated with
the experimental data itself, which is displayed in differences between drifts in positive and
negative loading direction or between two tests with the same layout, these drift capacity
predictions are still good.

Furthermore, the effect several characteristics have on the response of walls was studied
especially with regard to the displacement capacity. To this end, the influence of the trans-
verse and longitudinal reinforcement ratios, aspect ratio and axial load ratio on the behavior
of the walls was investigated. Experimental data against which the predictions could be ver-
ified was only available for variations of the aspect and transverse reinforcement ratios. In
both cases, this data agrees well with the predictions of the 3PKT. Generally, the 3PKT
shows that, as expected, each of the examined characteristics has a strong influence on
the displacement capacity. The strength of the 3PKT lies in explicitly taking into account
the load bearing mechanism developing in a wall. The drift capacity formulations which the
3PKT predictions were compared to primarily predict a general trend due to a change of a
certain parameter, e.g. an increasing drift capacity with increasing aspect ratio. These pre-
dictions may differ slightly for different wall layouts, but the gradients typically do not change
much, as evident in the graphs in this chapter. Contrarily to the drift capacity models, the
3PKT is able to capture changes in the load bearing mechanisms, which may have a signif-
icant influence on the drift capacity. An example for this is the prediction of the transverse
reinforcement ratio that marks the transition from brittle to ductile behavior and thus the
transition towards a larger gradient of the drift capacity prediction for a given wall layout.

Finally, the behavior of the critical loading zone, which especially influences at which drift
degradation initiates, was studied in more detail. However, this study was restricted by
a lack of detailed experimental data for this zone. The correlation of the size of the CLZ
with several characteristics was studied. Based on the currently available experimental
data, a simple empirical expression, which is a function of the geometry of the wall, is
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proposed. If the size of the CLZ is determined with this expression, the prediction of the
displacement capacity is slightly worse than before but still satisfactory, with an average
ratio of experimental to predicted drift of 1.25 and a COV of 29.5%. The prediction of the
peak force is almost equally good as before with an average ratio of 1.0 and a COV of
6.7%. The empirical expression for the size of the CLZ should only be used for walls with
characteristics within the range of characteristics included in the database.
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6 Summary, Conclusions and Outlook

6.1 Summary

The study presented here aims at contributing to the modeling of the inelastic response of
rectangular, reinforced concrete wall-type bridge piers, which are not detailed in a way that
ensures a ductile response. Models to predict the inelastic force-deformation relationship
are necessary for the displacement-based assessment of existing structures. As this as-
sessment needs to be done by practicing engineers, the aim of the study was to develop
models that are easily applicable but which yield reliable results nevertheless. A test series
of seven large-scale bridge piers with detailing that is representative of existing structures
was used for the validation of the models.

Chapter 2 gives a review of existing plastic hinge models that are applicable to wall-type
structures. Besides a summary of plastic hinge length proposals, this chapter includes
equations to calculate the flexural response of a structural member as well as strain and
curvature limits, which are used to define the deformation capacity. Due to the geometry
of the piers and their detailing deficiencies, two further aspects need to be considered in
the plastic hinge model: shear deformations and the influence of lap-splices in the potential
plastic hinge region on the behavior of the pier. Three different modeling approaches for
predicting the shear deformations that can be used in combination with plastic hinge mod-
eling are reviewed. As investigating the behavior of lap-splices in detail is outside the scope
of this study, only some models for predicting the strength of lap-splices and for estimating
failure strain limits are reviewed.

In the following Chapter 3 the models that were introduced in the previous chapter are ap-
plied to predict the force-deformation response of the seven experimentally tested piers.
Based on the comparison with the experimental data, an approach with which the flexural
response is well predicted is identified. Furthermore, it is shown that by using strain lim-
its for the moment curvature analysis relatively conservative estimates of the deformation
capacities corresponding to a point shortly after peak load are obtained. The results of
the approaches to predict the shear deformations are compared to the experimental data
and modifications to better capture the shear response are examined. Based on the failure
mode observed in the experiments and comparison with the experimental data, a concrete
strain limit is established with which the onset of degradation of the test units with lap-
splices is well captured. It is assumed that the lateral strength of the test unit then reduces
immediately to its residual value which is related to the maximum eccentricity of the axial
load.

Shear strength degradation models are reviewed in Chapter 4, which could provide a less
conservative estimate of the drift capacity. The first part of the chapter introduces several
types of shear degradation models which were mostly developed for columns and beams,
such as ductility dependent models and drift capacity models. The second part compares
the prediction of the models to the experimental data. It is shown that no reliable estimates
of the drift capacity can be obtained with these types of models.

Chapter 5 treats a different modeling approach based on the kinematics of shear critical
piers which allows for predicting the onset of shear and axial failure. At the beginning of the
chapter, a brief introduction to this modeling approach, developed by [13], is given. This
introduction is followed by a validation of the approach against a database of 28 wall-type
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piers. The model is shown to yield good predictions of the shear force and deformation ca-
pacity of the walls included in the database. Subsequently, the influence of some important
characteristics on the behavior of piers, particularly on their drift capacity, is examined with
the kinematic model. Finally, one characteristic parameter of this model, the size of the
“critical loading zone” which primarily influences the drift at which degradation initiates, is
discussed and an equation for estimating this length is proposed.

6.2 Conclusions

The aim of this study was to identify and develop easily applicable models that can be used
by practicing engineers for the displacement-based assessment of existing bridges. The
focus of the study was to predict the behavior of rectangular, wall-type bridge piers with
detailing deficiencies such as lap-splices in potential plastic hinge regions and low trans-
verse reinforcement ratios. Two types of models were investigated to this end: plastic hinge
models and a kinematic model. Regarding the plastic hinge modeling approach, several
conclusions can be drawn from this study. Despite the fact that plastic hinge models are
intended to predict the response of flexure-controlled members, good results were obtained
for the potentially shear critical wall-type piers that were investigated in this study. Based on
a comparison with the experimental data of seven bridge pier tests, a plastic hinge length
and formulations for the response, with which good estimates of the flexural response were
obtained, could be identified. The effect of strain penetration was neither explicitly ac-
counted for in the formulation of the plastic hinge nor the one of the flexural response, as
no detailed conclusion on how to incorporate it in the inelastic range could be drawn from
the experimental data. Furthermore, comparison with the experimental data showed that it
appears to be small enough to be neglected.

With the identified plastic hinge modeling procedure, good agreement was obtained not
only on a global, but also on a local level, which means that the deformation predicted for
a certain limit strain in the plastic hinge agreed well with the deformation at which that limit
strain is reached in the tests. Within the scope of plastic hinge modeling, strain or curvature
limits are used to define upper bounds for the curvature in the plastic hinge and thus define
the deformation capacity of the structure. With these curvature limits, relatively conserva-
tive estimates of the deformation capacity are obtained. However, for a less conservative
limit the onset of shear degradation needed to be taken into account. This is difficult within
the scope of plastic hinge modeling, as shear failure is based on a different mechanism
than that assumed in plastic hinge modeling. Hence, models such as the kinematic model
should be applied for less conservative estimates of the deformation capacity.

With regard to the influence of lap-splices at the base of the pier it was shown that a good
estimate of the onset of failure could be obtained, using a simple limit for the concrete
strain. This strain governs failure if the splice is not well confined and long enough to sus-
tain the maximum tension forces that could occur. The experimental data showed that a
slow degradation towards the residual shear force capacity, which is determined by the
eccentricity of the axial load, is not guaranteed. Predicting the rate of decay appears diffi-
cult, however, as it may depend on material properties with considerable scatter, such as
the concrete tensile strength, or the actual concrete cover of the reinforcement. Hence, it
should be assumed that the capacity drops to the residual level as soon as the strain that
triggers lap-splice failure is exceeded.

A more extensive study proved to be necessary to capture the shear deformations in combi-
nation with the plastic hinge modeling approach. Existing shear deformation models have
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been developed based on experimental results of mainly capacity designed and hence
flexure-controlled walls. For this type of walls, the shear deformation in the inelastic range
can be expressed as a constant ratio of the flexural deformation. While this constant ra-
tio was observed for the slender and thus more flexure-controlled walls of this study, the
assumption of a constant ratio did not hold for the more shear critical walls. Neverthe-
less, a satisfactory prediction of the shear deformation was obtained by modification of an
approach which relates the shear strain to the axial strain. Instead of assuming a con-
stant ratio of shear to flexural deformation, the ratio was computed from the axial strain
and curvature obtained from the moment-curvature analysis at each displacement. Fur-
thermore, a correction factor accounting for the increased shear deformations of piers with
low shear force resistance needed to be taken into account. Concerning the applicability
of ductility-dependent shear degradation models or drift capacity models, which are some-
times used in combination with plastic hinge models to estimate the displacement capacity
of a member, comparison with the experimental data showed that good results could not
be obtained with any of the existing approaches. This is due to the fact that most of them
were developed for beams or columns and contain simplifications that are reasonable for
this type of structural components, but invalid for wall-type piers. With these models, it is
possible to predict general trends in the development of the drift capacity based on certain
characteristics of the walls but not actual drift capacity estimates for a specific wall-type
pier.

To obtain a reliable estimate of the deformation capacity of a pier, its main characteristics
need to be taken into account. Doing so in a simplified manner yields results that are sig-
nificantly better than those obtained with the models mentioned in the previous paragraph,
as shown with the validation of a kinematic model. Application of this model revealed that
while the influence of a certain characteristic, such as the transverse reinforcement ratio, on
the drift capacity may qualitatively be the same for varying pier layouts, there may be sig-
nificant quantitative differences. The shear force and the drift capacity predictions obtained
with the kinematic model for shear critical, rectangular wall-type piers were found to be in
very good agreement with the data of 28 tests subjected to single curvature loading. Hence,
this model is suitable to predict the deformation capacity that is defined by the degradation
of both the shear and the axial load bearing mechanisms. Based on the currently available
test data, a simple empirical expression that relates the size of the “critical loading zone”, a
parameter that primarily influences the drift capacity at the onset of shear degradation, to
the section depth of the wall is proposed. With this estimate, the agreement of the shear
force prediction with the experimental data remains very good whereas the agreement of
the drift capacity prediction is slightly decreased, but still good.

6.3 Outlook

Several topics on which further research is necessary can be defined based on this study.
Regarding the plastic hinge modeling approach, two topics that constituted an important
part of this study still leave room for further research: the influence of lap-splices and the
shear deformations. The proposed concrete strain might be regarded as an upper bound
limit for the failure of the splice. The behavior of splices under reversed cyclic loading needs
to be better understood to examine whether a lower limit that initiates failure before the
concrete is crushed in compression is necessary. One of the three test units with lap-splices
considered in this study exhibited such a splitting failure before significant concrete damage
was observed, even though the splice was sufficiently long to transfer the maximum tension
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force. However, based on the experimental data of the large scale tests, no limits to predict
this failure could be derived.

With regard to the shear deformations, an approach relating the shear deformation to the
axial elongation of the test unit was investigated. Preliminary results indicated that good
predictions may be possible with this approach. However, only the contribution of one out
of two mechanisms, which contributed to approximately half the shear deformation, could
be expressed as a closed form solution. Such a solution also needs to be established for
the second mechanism.

Generally, one needs to keep in mind that even though the results obtained for the flexural
deformation of the wall-type piers was good, the plastic hinge modeling approach has been
validated against a very small database. Therefore, it needs to be validated, and improved
where necessary, against a larger database to reduce uncertainties regarding the choice
of e.g. the plastic hinge length and the limit strains that are applied.

Regarding the kinematic theory, the main field of research that remains is the estimate of
the size of the “critical loading zone”. The experimental data that was available to investi-
gate the development of this zone is, at present, very limited. Detailed measurements of
the area in which that zone forms would be desirable to study the development of this zone
in more detail.

Based on the experimental results and the review of models it seems recommendable to
not use the same models for different cross sections or different types of structures without
verifying the model for each type of structure. If models are applied without verification, the
predictions can be unreliable. This was evident in the drift capacity predictions made with
the beam and column models, for instance. Hence, the applicability of the models used
in this report should be verified for different types of cross section (e.g. flanged sections,
T-sections or hollow-core sections) and modified were necessary.
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Notation and Abbreviations

Capital Latin letters

A Cross sectional area

Ac Cross sectional area of core

Ag (Concrete) gross section

As Longitudinal reinforcement area

Asb Area of one longitudinal reinforcement bar

Av Transverse reinforcement area

E Modulus of elasticity

I Moment of inertia

EIeff Effective flexural stiffness

EIg Uncracked, gross flexural stiffness

G Shear modulus

Ksh Shear stiffness

Lb Base length (of an LVDT)

Lp Plastic hinge length

L′
p Plastic hinge length without influence due to strain penetration

Lpr Length over which plasticity spreads (∼ 2L′
p)

Ls Shear span

Lsp Strain penetration component of the plastic hinge length

M Bending moment

My First yield moment

MN Nominal yield moment

P Normal force

T Tension force

V Shear force

Vr Shear capacity

Vc Shear capacity provided by concrete

Vs Shear capacity provided by transverse steel

Vp Shear capacity provided by axial load

Vci Shear capacity due to aggregate interlock

Vcr Shear cracking load

Small Latin letters

b Section width (i.e. parallel to axis around which bending occurs)

bc Core section width

bcon Confined section width
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c Concrete cover to center of stirrup

d Effective section depth

dbl Longitudinal reinforcement bar diameter

dbv Transverse reinforcement bar diameter

fb Bond stress

fc Concrete compression strength

fcc Compression strength of confined concrete

fct Concrete tension strength

fcx,y Concrete stress in x- or y-direction, respectively

fsx,y Steel stress in x- or y-direction, respectively

fy Yield strength of steel

fyv Yield strength of transverse reinforcement

fu Ultimate strength of steel

h Total section depth

hc Core section depth

hcon Confined section depth

k Correction factor

kcon Confinement effectiveness factor

lcr Length along which cracks develop

ld Development length of reinforcement bar

ls Lap-splice length

n Normal force ratio

nbl Number of longitudinal reinforcement bars

nst Number of stirrups

s Transverse reinforcement spacing

sl Spacing of longitudinal reinforcement

sx Crack spacing in x-direction (uniaxial tension)

sy Crack spacing in y-direction (uniaxial tension)

sθ Crack spacing perpendicular to crack

sθ,x X-component of sθ
sθ,y Y-component of sθ
v Shear stress

xc Compression zone depth

xN Neutral axis depth

z Internal lever arm
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Capital Greek letters

Δ′
y First yield displacement

Δy Nominal yield displacement

Δfl Flexural displacement

Δs Shear displacement

Δsp Strain penetration displacement

Small Greek letters

β Compression softening factor

δs Reinforcement bar slip

ε Strain

εc0 Concrete strain under peak stress

εcc Confined concrete strain under peak stress

εcu Ultimate concrete strain

εh Hardening strain of steel

εy Yield strain of steel

εsu Ultimate strain of steel

φ Curvature

φy Nominal yield curvature

φ′
y First yield curvature

φu Ultimate curvature

γ Shear strain

γel Safety factor

μΔ Displacement ductility

μφ Curvature ductility

θ Crack angle

θsp Rotation due to strain penetration

θy Yield rotation

θu Ultimate rotation

�l Longitudinal reinforcement ratio

�l,web Longitudinal reinforcement ratio of the web

�v Transverse reinforcement ratio

σ Stress

τb Bond stress

ω Mechanical reinforcement ratio
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Abbreviations

ASFI Axial – Shear – Flexure Interaction method

MCFT Modified Compression Field Theory

RC Reinforced Concrete

USFM Uniaxial – Shear – Flexure Model

VK Test Unit (= Versuchsk örper)
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1330 FGU 2008/006 Energiegewinnung aus städtischen Tunneln: Systemeevaluation 2010

1329 SVI 2004/073 Alternativen zu Fussgängerstreifen in Tempo-30-Zonen 2010

1328 VSS 2005/302 Grundlagen zur Quantifizierung der Auswirkungen von Sicherheitsdefiziten 2011

1327 VSS 2006/601 Vorhersage von Frost und Nebel für Strassen 2010

1326 VSS 2006/207 Erfolgskontrolle Fahrzeugrückhaltesysteme 2011

1325 SVI 2000/557 Indices caractéristiques d'une cité-vélo. Méthode d'évaluation des 

politiques cyclables en 8 indices pour les petites et moyennes communes. 

2010

1324 VSS 2004/702 Eigenheiten und Konsequenzen für die Erhaltung der 

Strassenverkehrsanlagen im überbauten Gebiet 

2009

1323 VSS 2008/205 Ereignisdetektion im Strassentunnel 2011

1322 SVI 2005/007 Zeitwerte im Personenverkehr: Wahrnehmungs- und Distanzabhängigkeit 2008

1321 VSS 2008/501 Validation de l'oedomètre CRS sur des échantillons intacts 2010
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1320 VSS 2007/303 Funktionale Anforderungen an Verkehrserfassungssysteme im 

Zusammenhang mit Lichtsignalanlagen 

2010

1319 VSS 2000/467 Auswirkungen von Verkehrsberuhigungsmassnahmen auf die 

Lärmimmissionen 

2010

1318 FGU 2006/001 Langzeitquellversuche an anhydritführenden Gesteinen 2010

1317 VSS 2000/469 Geometrisches Normalprofil für alle Fahrzeugtypen 2010

1316 VSS 2001/701 Objektorientierte Modellierung von Strasseninformationen 2010

1315 VSS 2006/904 Abstimmung zwischen individueller Verkehrsinformation und 

Verkehrsmanagement 

2010

1314 VSS 2005/203 Datenbank für Verkehrsaufkommensraten 2008

1313 VSS 2001/201 Kosten-/Nutzenbetrachtung von Strassenentwässerungssystemen, 

Ökobilanzierung 

2010

1312 SVI 2004/006 Der Verkehr aus Sicht der Kinder: 

Schulwege von Primarschulkindern in der Schweiz 

2010

1311 VSS 2000/543 VIABILITE DES PROJETS ET DES INSTALLATIONS ANNEXES 2010

1310 ASTRA 2007/002 Beeinflussung der Luftströmung in Strassentunneln im Brandfall 2010

1309 VSS 2008/303 Verkehrsregelungssysteme - Modernisierung von Lichtsignalanlagen 2010

1308 VSS 2008/201 Hindernisfreier Verkehrsraum - Anforderungen aus Sicht von Menschen mit 

Behinderung 

2010

1307 ASTRA 2006/002 Entwicklung optimaler Mischgüter und Auswahl geeigneter Bindemittel; D-

A-CH - Initialprojekt 

2008

1306 ASTRA 2008/002 Strassenglätte-Prognosesystem (SGPS) 2010

1305 VSS 2000/457 Verkehrserzeugung durch Parkierungsanlagen 2009

1304 VSS 2004/716 Massnahmenplanung im Erhaltungsmanagement von Fahrbahnen 2008

1303 ASTRA 2009/010 Geschwindigkeiten in Steigungen und Gefällen; Überprüfung 2010

1302 VSS 1999/131 Zusammenhang zwischen Bindemitteleigenschaften und Schadensbildern 

des Belages? 

2010

1301 SVI 2007/006 Optimierung der Strassenverkehrsunfallstatistik durch Berücksichtigung 

von Daten aus dem Gesundheitswesen 

2009

1300 VSS 2003/903 SATELROU 

Perspectives et applications des méthodes de navigation pour la 

télématique des transports routiers et pour le système d'information de la 

route 

2010

1299 VSS 2008/502 Projet initial - Enrobés bitumineux à faibles impacts énergétiques et 

écologiques 

2009

1298 ASTRA 2007/012 Griffigkeit auf winterlichen Fahrbahnen 2010

1297 VSS 2007/702 Einsatz von Asphaltbewehrungen (Asphalteinlagen) im 

Erhaltungsmanagement 

2009

1296 ASTRA 2007/008 Swiss contribution to the Heavy-Duty Particle  Measurement Programme 

(HD-PMP) 

2010

1295 VSS 2005/305 Entwurfsgrundlagen für Lichtsignalanlagen und Leitfaden 2010

1294 VSS 2007/405 Wiederhol- und Vergleichspräzision der Druckfestigkeit von 

Gesteinskörnungen am Haufwerk 

2010

1293 VSS 2005/402 Détermination de la présence et de l'efficacité de dope dans les bétons 

bitumineux 

2010

1292 ASTRA 2006/004 Entwicklung eines Pflanzenöl-Blockheizkraftwerkes mit eigener Ölmühle 2010

1291 ASTRA 2009/005 Fahrmuster auf überlasteten Autobahnen 

Simultanes Berechnungsmodell für das Fahrverhalten auf Autobahnen als 

Grundlage für die Berechnung von Schadstoffemissionen und 

Fahrzeitgewinnen 

2010

1290 VSS 1999/209 Conception et aménagement de passages inférieurs et supérieurs pour 

piétons et deux-roues légers 

2008

1289 VSS 2005/505 Affinität von Gesteinskörnungen und Bitumen, nationale Umsetzung der 2010
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EN 

1288 ASTRA 2006/020 Footprint II - Long Term Pavement Performance and Environmental 

Monitoring on A1 

2010

1287 VSS 2008/301 Verkehrsqualität und Leistungsfähigkeit von komplexen ungesteuerten 

Knoten: Analytisches Schätzverfahren 

2009

1286 VSS 2000/338 Verkehrsqualität und Leistungsfähigkeit auf Strassen ohne 

Richtungstrennung 

2010

1285 VSS 2002/202 In-situ Messung der akustischen Leistungsfähigkeit von Schallschirmen 2009

1284 VSS 2004/203 Evacuation des eaux de chaussée par les bas-cotés 2010

1283 VSS 2000/339 Grundlagen für eine differenzierte Bemessung von Verkehrsanlagen 2008

1282 VSS 2004/715 Massnahmenplanung im Erhaltungsmanagement von Fahrbahnen: 

Zusatzkosten infolge Vor- und Aufschub von Erhaltungsmassnahmen 

2010

1281 SVI 2004/002 Systematische Wirkungsanalysen von kleinen und mittleren 

Verkehrsvorhaben 

2009

1280 ASTRA 2004/016 Auswirkungen von fahrzeuginternen Informationssystemen auf das 

Fahrverhalten und die Verkehrssicherheit Verkehrspsychologischer 

Teilbericht 

2010

1279 VSS 2005/301 Leistungsfähigkeit zweistreifiger Kreisel 2009

1278 ASTRA 2004/016 Auswirkungen von fahrzeuginternen Informationssystemen auf das 

Fahrverhalten und die Verkehrssicherheit - Verkehrstechnischer Teilbericht 

2009

1277 SVI 2007/005 Multimodale Verkehrsqualitätsstufen für den Strassenverkehr - Vorstudie 2010

1276 VSS 2006/201 Überprüfung der schweizerischen Ganglinien 2008

1275 ASTRA 2006/016 Dynamic Urban Origin - Destination Matrix - Estimation Methodology 2009

1274 SVI 2004/088 Einsatz von Simulationswerkzeugen in der Güterverkehrs- und 

Transportplanung 

2009

1273 ASTRA 2008/006 UNTERHALT 2000 - Massnahme M17, FORSCHUNG: Dauerhafte 

Materialien und Verfahren 

SYNTHESE - BERICHT zum Gesamtprojekt 

"Dauerhafte Beläge" mit den Einzelnen Forschungsprojekten: 

- ASTRA 200/419: Verhaltensbilanz der Beläge auf Nationalstrassen 

- ASTRA 2000/420: Dauerhafte Komponenten auf der Basis erfolgreicher 

Strecken 

- ASTRA 2000/421: Durabilité des enrobés 

- ASTRA 2000/422: Dauerhafte Beläge, Rundlaufversuch 

- ASTRA 2000/423: Griffigkeit der Beläge auf Autobahnen, Vergleich 

zwischen den Messergebnissen von SRM und SCRIM 

- ASTRA 2008/005: Vergleichsstrecken mit unterschiedlichen oberen 

Tragschichten auf einer Nationalstrasse 

2008

1272 VSS 2007/304 Verkehrsregelungssysteme -  behinderte und ältere Menschen an 

Lichtsignalanlagen 

2010

1271 VSS 2004/201 Unterhalt von Lärmschirmen 2009

1270 VSS 2005/502 Interaktion Strasse 

Hangstabilität: Monitoring und Rückwärtsrechnung 

2009

1269 VSS 2005/201 Evaluation von Fahrzeugrückhaltesystemen im Mittelstreifen von 

Autobahnen 

2009

1268 ASTRA 2005/007 PM10-Emissionsfaktoren von Abriebspartikeln des Strassenverkehrs 

(APART) 

2009

1267 VSS 2007/902 MDAinSVT Einsatz modellbasierter Datentransfernormen (INTERLIS) in 

der Strassenverkehrstelematik 

2009

1266 VSS 2000/343 Unfall- und Unfallkostenraten im Strassenverkehr 2009

1265 VSS 2005/701 Zusammenhang zwischen dielektrischen Eigenschaften und 

Zustandsmerkmalen von bitumenhaltigen Fahrbahnbelägen 

(Pilotuntersuchung) 

2009

1264 SVI 2004/004 Verkehrspolitische Entscheidfindung in der Verkehrsplanung 2009
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1263 VSS 2001/503 Phénomène du dégel des sols gélifs dans les infrastructures des voies de 

communication et les pergélisols alpins 

2006

1262 VSS 2003/503 Lärmverhalten von Deckschichten im Vergleich zu Gussasphalt mit 

strukturierter Oberfläche 

2009

1261 ASTRA 2004/018 Pilotstudie zur Evaluation einer mobilen Grossversuchsanlage für 

beschleunigte Verkehrslastsimulation auf Strassenbelägen 

2009

1260 FGU 2005/001 Testeinsatz der Methodik "Indirekte Vorauserkundung von 

wasserführenden Zonen mittels Temperaturdaten anhand der Messdaten 

des Lötschberg-Basistunnels 

2009

1259 VSS 2004/710 Massnahmenplanung im Erhaltungsmanagement von Fahrbahnen - 

Synthesebericht 

2008

1258 VSS 2005/802 Kaphaltestellen Anforderungen und Auswirkungen 2009

1257 SVI 2004/057 Wie Strassenraumbilder den Verkehr beeinflussen 

Der Durchfahrtswiderstand als Arbeitsinstrument bei der städtebaulichen 

Gestaltung von Strassenräumen 

2009

1256 VSS 2006/903 Qualitätsanforderungen an die digitale Videobild-Bearbeitung zur 

Verkehrsüberwachung 

2009

1255 VSS 2006/901 Neue Methoden zur Erkennung und Durchsetzung der zulässigen 

Höchstgeschwindigkeit 

2009

1254 VSS 2006/502 Drains verticaux préfabriqués thermiques pour la consolidation in-situ des 

sols 

2009

1253 VSS 2001/203 Rétention des polluants des eaux de chausées  selon le système 

"infilitrations sur les talus". Vérification in situ et optimisation 

2009

1252 SVI 2003/001 Nettoverkehr von verkehrsintensiven Einrichtungen (VE) 2009

1251 ASTRA 2002/405 Incidence des granulats arrondis ou partiellement arrondis sur les 

propriétés d'ahérence des bétons bitumineux 

2008

1250 VSS 2005/202 Strassenabwasser Filterschacht 2007

1249 FGU 2003/004 Einflussfaktoren auf den Brandwiderstand von Betonkonstruktionen 2009

1248 VSS 2000/433 Dynamische Eindringtiefe zur Beurteilung von Gussasphalt 2008

1247 VSS 2000/348 Anforderungen an die strassenseitige Ausrüstung bei der Umwidmung von 

Standstreifen 

2009

1246 VSS 2004/713 Massnahmenplanung im Erhaltungsmanagement von Fahrbahnen: 

Bedeutung Oberflächenzustand und Tragfähigkeit sowie gegenseitige 

Beziehung für Gebrauchs- und Substanzwert 

2009

1245 VSS 2004/701 Verfahren zur Bestimmung des Erhaltungsbedarfs in kommunalen 

Strassennetzen 

2009

1244 VSS 2004/714 Massnahmenplanung im Erhaltungsmanagement von Fahrbahnen -  

Gesamtnutzen und Nutzen-Kosten-Verhältnis von standardisierten 

Erhaltungsmassnahmen 

2008

1243 VSS 2000/463 Kosten des betrieblichen Unterhalts von Strassenanlagen 2008

1242 VSS 2005/451 Recycling von Ausbauasphalt in Heissmischgut 2007

1241 ASTRA 2001/052 Erhöhung der Aussagekraft des LCPC  Spurbildungstests 2009

1240 ASTRA 2002/010 L'acceptabilité du péage de congestion : Résultats et 

analyse de l'enquête en Suisse 

2009

1239 VSS 2000/450 Bemessungsgrundlagen für das Bewehren mit Geokunststoffen 2009

1238 VSS 2005/303 Verkehrssicherheit an Tagesbaustellen und bei Anschlüssen im 

Baustellenbereich von Hochleistungsstrassen 

2008

1237 VSS 2007/903 Grundlagen für eCall in der Schweiz 2009

1236 ASTRA 

2008/008_07 

Analytische Gegenüberstellung der Strategie- und Tätigkeitsschwerpunkte 

ASTRA-AIPCR 

2008

1235 VSS 2004/711 Forschungspaket Massnahmenplanung im EM von Fahrbahnen - 

Standardisierte Erhaltungsmassnahmen 

2008

1234 VSS 2006/504 Expérimentation in situ du nouveau drainomètre européen 2008
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1233 ASTRA 2000/420 Unterhalt 2000 Forschungsprojekt FP2 Dauerhafte Komponenten 

bitumenhaltiger Belagsschichten 

2009

651 AGB 

2006/006_OBF 

Instandsetzung und Monitoring von AAR-geschädigten Stützmauern und 

Brücken 

2013

650 AGB 2005/010 Korrosionsbeständigkeit von nichtrostenden Betonstählen 2012

649 AGB 2008/012 Anforderungen an den Karbonatisierungswiderstand von Betonen 2012

648 AGB 2005/023 +  

AGB 2006/003 

Validierung der AAR-Prüfungen für Neubau und Instandsetzung 2011

647 AGB 2004/010 Quality Control and Monitoring of electrically isolated post- tensioning 

tendons in bridges 

2011

646 AGB 2005/018 Interactin sol-structure : ponts à culées intégrales 2010

645 AGB 2005/021 Grundlagen für die Verwendung von Recyclingbeton aus Betongranulat 2010

644 AGB 2005/004 Hochleistungsfähiger Faserfeinkornbeton zur Effizienzsteigerung bei der 

Erhaltung von Kunstbauten aus Stahlbeton 

2010

643 AGB 2005/014 Akustische Überwachung einer stark geschädigten Spannbetonbrücke und 

Zustandserfassung beim Abbruch 

2010

642 AGB 2002/006 Verbund von Spanngliedern 2009

641 AGB 2007/007 Empfehlungen zur Qualitätskontrolle von Beton mit 

Luftpermeabilitätsmessungen 

2009

640 AGB 2003/011 Nouvelle méthode de vérification des ponts mixtes à âme pleine 2010

639 AGB 2008/003 RiskNow-Falling Rocks Excel-basiertes Werkzeug zur Risikoermittlung bei 

Steinschlagschutzgalerien 

2010

638 AGB2003/003 Ursachen der Rissbildung in Stahlbetonbauwerken aus 

Hochleistungsbeton und neue Wege zu deren Vermeidung 

2008

637 AGB 2005/009 Détermination de la présence de chlorures à l'aide du Géoradar 2009

636 AGB 2002/028 Dimensionnement et vérification des dalles de roulement de ponts routiers 2009

635 AGB 2004/002 Applicabilité de l'enrobé drainant sur les ouvrages d'art du réseau des 

routes nationales 

2008

634 AGB 2002/007 Untersuchungen zur Potenzialfeldmessung an Stahlbetonbauten 2008

633 AGB 2002/014 Oberflächenschutzsysteme für Betontragwerke 2008

632 AGB 2008/201 Sicherheit des Verkehrssystem Strasse und dessen Kunstbauten 

Testregion - Methoden zur Risikobeurteilung Schlussbericht 

2010

631 AGB 2000/555 Applications structurales du Béton Fibré à Ultra-hautes Performances aux 

ponts 

2008

630 AGB 2002/016 Korrosionsinhibitoren für die Instandsetzung chloridverseuchter 

Stahlbetonbauten 

2010

629 AGB 2003/001 +  

AGB 2005/019 

Integrale Brücken - Sachstandsbericht 2008

628 AGB 2005/026 Massnahmen gegen chlorid-induzierte Korrosion und zur Erhöhung der 

Dauerhaftigkeit 

2008

627 AGB 2002/002 Eigenschaften von normalbreiten und überbreiten Fahrbahnübergängen 

aus Polymerbitumen nach starker Verkehrsbelastung 

2008

626 AGB 2005/110 Sicherheit des Verkehrssystems Strasse und dessen Kunstbauten: 

Baustellensicherheit bei Kunstbauten 

2009

625 AGB 2005/109 Sicherheit des Verkehrssystems Strasse und dessen Kunstbauten: 

Effektivität und Effizienz von Massnahmen bei Kunstbauten 

2009

624 AGB 2005/108 Sicherheit des Verkehrssystems / Strasse und dessen Kunstbauten / 

Risikobeurteilung für Kunstbauten 

2010

623 AGB 2005/107 Sicherheit des Verkehrssystems Strasse und dessen Kunstbauten: 

Tragsicherheit der bestehenden Kunstbauten 

2009

622 AGB 2005/106 Rechtliche Aspekte eines risiko- und effizienzbasierten 

Sicherheitskonzepts 

2009
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621 AGB 2005/105 Sicherheit des Verkehrssystems Strasse und dessen Kunstbauten 

Szenarien der Gefahrenentwicklung 

2009

620 AGB 2005/104 Sicherheit des Verkehrssystems Strasse und dessen Kunstbauten: 

Effektivität und Effizienz von Massnahmen 

2009

619 AGB 2005/103 Sicherheit des Verkehrssystems / Strasse und dessen Kunstbauten / 

Ermittlung des Netzrisikos 

2010

618 AGB 2005/102 Sicherheit des Verkehrssystems Strasse und dessen Kunstbauten: 

Methodik zur vergleichenden Risikobeurteilung 

2009

617 AGB 2005/100 Sicherheit des Verkehrssystems Strasse und dessen Kunstbauten 

Synthesebericht 

2010

616 AGB 2002/020 Beurteilung von Risiken und Kriterien zur Festlegung akzeptierter Risiken 

in Folge aussergewöhnlicher Einwirkungen bei Kunstbauten 

2009
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